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Maths Primer

This is a revision course designed to act as a mathematics refresher. The
volume of work covered is signi�cantly large so the emphasis is on working
through the notes and problem sheets. The four topics covered are

� Calculus

� Linear Algebra

� Di¤erential Equations

� Probability & Statistics
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1 Introduction to Calculus

1.1 Basic Terminology

We begin by de�ning some mathematical shorthand and number systems

9 there exists
8 for all
) therefore
* because

�! which gives
s.t such that
: such that
i¤ if and only if

� equivalent
� similar
2 an element of
!x a unique x
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Natural Numbers N = f0; 1; 2; 3; :::::g

Integers (�N) Z = f0; � 1; � 2; � 3; :::::g

Rationals pq : p; q 2 Z; Q =
n
1
2; 0:76; 2:25; 0:3333333::::

o
Irrationals Q =

np
2; 0:01001000100001:::; �; e

o
Reals R all the above

Complex C =
n
x+ iy : i =

p
�1
o
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(a; b) = a < x < b open interval

[a; b] = a � x � b closed interval

(a; b] = a < x � b semi-open/closed interval

[a; b) = a � x < b semi-open/closed interval

So typically we would write x 2 (a; b) :

Examples

�1 < x <1 � (�1;1)
�1 < x � b � (�1; b]
a � x <1 � [a;1)

Page 4



1.2 Functions

This is a term we use very loosely, but what is a function? Clearly it is a type of
black box with some input and a corresponding output. As long as the correct
result comes out we usually are not too concerned with what happens �inside�.

A function denoted f (x) of a single variable x is a rule that assigns each ele-
ment of a setX (written x 2 X) to exactly one element y of a set Y (y 2 Y ) :

A function is denoted by the form y = f (x) or x 7! f (x) :

We can also write f : X �! Y; which is saying that f is a mapping such that
all members of the input set X are mapped to elements of the output set Y:
So clearly there are a number of ways to describe the workings of a function.

For example, if f (x) = x3; then f (�2) = �23 = �8:
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We often write y = f (x) where y is the dependent variable and x is the
independent variable.
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The set X is called the domain of f and the set Y is called the image (or
range), written Domf and Im f; in turn. For a given value of x there should
be at most one value of y. So the role of a function is to operate on the
domain and map it across uniquely to the range.

So we have seen two notations for the same operation.

The �rst y = f (x) suggests a graphical representation whilst the second
f : X �! Y establishes the idea of a mapping.
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There are three types of mapping:

1. For each x 2 X; 9 one y 2 Y: This is a one to one mapping (or 1 � 1
function) e.g. y = 3x+ 1:

2. More than one x 2 X; gets mapped onto one y 2 Y: This is a many to
one mapping (or many �1 function) e.g. y = 2x2 + 1; because x = �2
yields one y:

3. For each x 2 X; 9 more than one y 2 Y; e.g. y = �
p
x: This is a many

to one mapping. Clearly it is multivalued, and has two branches. We will
assume that only the positive value is being considered for consistency with
the de�nition of a function. A one to many mapping is not a function.
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The function maps the domain across to the range. What about a process
which does the reverse? Such an operation is due to the inverse function which
maps the image of the original function to the domain. The function y = f (x)
has inverse x = f�1 (y) : Interchange of x and y leads to consideration of
y = f�1 (x) :

The inverse function f�1 (x) is de�ned so that

f
�
f�1 (x)

�
= x and f�1 (f (x)) = x:

Thus x2 and
p
x are inverse functions and we say they are mutually inverse.

Note the inverse
p
x is multivalued unless we de�ne it such that only non-

negative values are considered.

Example 1: What is the inverse of y = 2x2 � 1:
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i.e. we want y �1: One way this can be done is to write the function above as

x = 2y2 � 1

and now rearrange to have y = :::: so

y =

s
x+ 1

2
:

Hence y �1 (x) =

s
x+ 1

2
: Check:

yy�1 (x) = 2

0@sx+ 1
2

1A2 � 1 = x = y�1y (x)

Example 2: Consider f (x) = 1=x; therefore f�1 (x) = 1=x

Domf = (�1; 0) [ (0;1) or R� f0g
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Returning to the earlier example

y = 2x2 � 1
clearly Domf = R (clearly) and for

y �1 (x) =

s
x+ 1

2

to exist we require the term inside the square root sign to be non-negative, i.e.
x+1
2 � 0 =) x > �1; therefore Domf = f[�1;1)g :

An even function is one which has the property

f (�x) = f (x)
e.g. f (x) = x2:

f (x) = x3 is an example of an odd function because

f (�x) = �f (x) :
Most functions are neither even nor odd but every function can be expressed
as the sum of an even and odd function.
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1.2.1 Explicit/Implicit Representation

When we express a function as y = f (x) ; then we can obtain y corresponding
to a (known) value of x: We say y is an explicit function. All known terms
are on the right hand side (rhs) and unknown on the left hand side (lhs). For
example

y = 2x2 + 4x� 16 = 0

Occasionally we may write a function in an implicit form f (x; y) = 0; al-
though in general there is no guarantee that for each x there is a unique y.
A trivial example is y � x2 = 0;which in its current form is implicit. Simple
rearranging gives y = x2 which is explicit:

A more complex example is 4y4 � 2y2x2 � yx2 + x2 + 3 = 0:

This can neither be expressed as y = f (x) or x = g (y) :
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So we see all known and unknown variables are bundled together. An implicit
form which does not give rise to a function is

y2 + x2 � 16 = 0:

This can be written as

y =
q
16� x2:

and e.g. for x = 0 we can have either y = 4 or y = �4; i.e. one to many.
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1.2.2 Types of function f (x)

Polynomials are functions which involve powers of x;

y = f (x) = a0 + a1x+ a2x
2 + :::::

::+ an�1x
n�1 + anxn:

The highest power is called the degree of the polynomial - so f (x) is an nth

degree polynomial. We can express this more compactly as

f (x) =
nX
k=0

akx
k

where the coe¢ cients of x are constants.

Polynomial equations are written f (x) = 0; so an nth degree polynomial
equation is

anx
n + an�1x

n�1 + ::::::+ a2x
2 + a1x+ a0 = 0:
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k = 1; 2 gives a linear and quadratic in turn. The most general form of
quadratic equation is

ax2 + bx+ c = 0:

To solve we can complete the square which gives�
x+ b

2a

�2 � b2

4a2
+
c

a
= 0�

x+ b
2a

�2
= b2

4a2
� c

a
= b2�4ac

4a2

x+ b
2a = �

p
b2�4ac
2a

and �nally we get the well known formula for x

x =
�b�

p
b2 � 4ac
2a

:

There are three cases to consider:

(1) b2 � 4ac > 0 �! x1 6= x2 2 R : 2 distinct real roots
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(2) b2 � 4ac = 0 �! x = x1 = x2 = �
b

2a
2 R : one two fold root

(3) b2 � 4ac < 0 �! x1 6= x2 2 C � Complex conjugate pair
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1.2.3 The Modulus Function

Sometimes we wish to obtain the absolute value of a number, i.e. positive part.
For example the absolute value of �3:9 is 3:9: In maths there is a function
which gives us the absolute value of a variable x called the modulus function,
written jxj and de�ned as

y = jxj =
(
x x > 0
�x x < 0

;

although most de�nitions included equality in the positive quadrant.

modulus function

0

0.5

1

1.5

2

2.5

3

3.5

­4 ­3 ­2 ­1 0 1 2 3 4
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This is an example of a piecewise function.

The name is given because they are functions that comprise of �pieces�, each
piece of the function de�nition depends on the value of x.

So, for the modulus, the �rst de�nition is used when x is non-negative and the
second if x is negative.
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1.3 Limits

Choose a point x0 and function f (x) : Suppose we are interested in this
function near the point x = x0: The function need not be de�ned at x = x0:
We write f (x) �! l as x �! x0; "if f (x) gets closer and closer to l as x
gets close to x0". Mathematically we write this as

lim
x!x0

f (x) �! l;

if 9 a number l such that

� Whenever x is close to x0

� f (x) is close to l:
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The limit only exists if

f (x) �! l as x! x�0
f (x) �! l as x! x+0

Let us have a look at a few basic examples and corresponding "tricks" to
evaluate them

Example 1:

lim
x!0

�
x2 + 2x+ 3

�
�! 0 + 0 + 3 �! 3;
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Example 2:

lim
x!1

x2 + 2x+ 2

3x2 + 4
= lim

x!1

x2

x2
+ 2x
x2
+ 2
x2

3x2

x2
+ 4
x2

=

lim
x!1

1 + 2
x +

2
x2

3 + 4
x2

�! 1

3
:

Example 3:

lim
x!3

x2 � 9
x� 3

= lim
x!3

(x+ 3) (x� 3)
(x� 3)

= lim
x!3

(x+ 3) �! 6
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A function f (x) is continuous at x0 if

lim
x!x0

f (x) = f (x0) :

That is, �we can draw its graph without taking the pen o¤ the paper�.
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1.3.1 The exponential and log functions

The logarithm (or simply log) was introduced to solve equations of the form

ap = N

and we say p is log of N to base a: That is we take logs of both sides (loga)

loga a
p = logaN

which gives

p = logaN:

By de�nition loga a = 1 (important).

We will often need the exponential function ex and the (natural) logarithm
loge x or (lnx) :
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Here

e = 2:718281828 : : : :

which is the approximation to

lim
n!1

�
1 +

1

n

�n
when n is very large. Similarly the exponential function can be approximated
from

lim
n!1

�
1 +

x

n

�n

lnx and ex are mutual inverses:

log (ex) = elog x = x:
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Also

1

ex
= e�x:

Here we have used the property (xa)b = xab; which allowed us to write
1
ex = (e

x)�1 = e�x:

Their graphs look like this:

Exponential Functions
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Note that ex is always strictly positive. It tends to zero as x becomes very
large and negative, and to in�nity as x becomes large and positive. To get
an idea of how quickly ex grows, note the approximation e5 t 150:

Later we will also see e�x
2=2; which is particularly useful in probability: This

function decays particularly rapidly as jxj increases.

Note:

exey = ex+y; e0 = 1

(recall xa:xb = xa+b) and

log (xy) = log x+ log y; log (1=x) = � log x; log 1 = 0:
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log

 
x

y

!
= log x� log y:

Dom (ex) = R; Im (ex) = (0;1)
Dom (lnx) = (0;1) ; Im (lnx) = R

Example:

lim
x!1e

�x �! 0; lim
x!1e

x �!1; lim
x!0

ex �! e0 = 1:
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1.3.2 Trigonometric/Circular Functions

sinx and cosx

­1.5

­1

­0.5

0

0.5

1

1.5

­8 ­6 ­4 ­2 0 2 4 6 8

sinx is an odd function, i.e. sin (�x) = � sinx:

It is periodic with period 2�: sin (x+ 2�) = sinx. This means that after
every 360� it repeats itself.

sinx = 0() x = n� 8n 2 Z
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Dom (sinx)=R and Im (sinx)= [�1; 1]

cosx is an even function, i.e. cos (�x) = cosx:

It is periodic with period 2�: cos (x+ 2�) = cosx.

cosx = 0() x = (2n+ 1) �2 8n 2 Z

Dom (cosx)=R and Im (cosx) = [�1; 1]

tanx =
sinx

cosx

This is an odd function: tan (�x) = tanx

Periodic: tan (x+ �) = tanx
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Dom = fx : cosx 6= 0g =
n
x : x 6= (2n+ 1) �2 ; n 2 Z

o
= R�

n
(2n+ 1) �2 ; n 2 Z

o
Trigonometric Identities:

cos2 x+ sin2 x = 1; sin (x� y) = sinx cos y � cosx sin y

cos (x� y) = cosx cos y � sinx sin y; tan (x+ y) = tanx+ tan y

1� tanx tan y
Exercise: Verify the following sin

�
x+ �

2

�
= cosx; cos

�
�
2 � x

�
= sinx:

The reciprocal trigonometric functions are de�ned by

secx =
1

cosx
; cscx =

1

sinx
; cotx =

1

tanx
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More examples on limiting:

lim
x!0

sinx �! 0; lim
x!0

sinx

x
�! 1; lim

x!0
jxj �! 0

What about lim
x!0

jxj
x
?

lim
x!0+

jxj
x

= 1

lim
x!0�

jxj
x

= �1

therefore
jxj
x
does not tend to a limit as x! 0:
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Hyperbolic Functions

sinhx =
1

2

�
ex � e�x

�
Odd function: sinh (�x) = � sinhx

Dom (sinhx)=R; Im (sinhx) = R
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coshx =
1

2

�
ex + e�x

�

Even function: cosh (�x) = coshx

Dom (coshx)=R; Im (coshx) = [1;1)
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tanhx =
sinhx

coshx
Dom (tanhx)=R; Im (tanhx) = (�1; 1)

Identities:

cosh2 x� sinh2 x = 1

sinh (x+ y) = sinhx cosh y + coshx sinh y

cosh (x+ y) = coshx cosh y + sinhx sinh y
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Inverse Hyperbolic Functions
y = sinh�1 x �! x = sinh y =

exp y�exp(�y)
2 ;

2x = exp y � exp (�y)

multiply both sides by exp y to obtain 2xey = e2y � 1 which can be written
as

(ey)2 � 2x (ey)� 1 = 0:

This gives us a quadratic in ey therefore

ey =
2x�

p
4x2 + 4

2
= x�

q
x2 + 1

Now
p
x2 + 1 > x =) x�

p
x2 + 1 < 0 and we know that ey > 0 therefore

we have ey = x+
p
x2 + 1: Hence taking logs of both sides gives us

sinh�1 x = ln
����x+q

x2 + 1

����
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Dom
�
sinh�1 x

�
=R; Im

�
sinh�1 x

�
= R

Similarly y = cosh�1 x �! x = cosh y =
exp y+exp(�y)

2 ;

2x = exp y + exp (�y) and again multiply both sides by exp y to obtain

(ey)2 � 2x (ey) + 1 = 0:

and

ey = x+
q
x2 � 1
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We take the positive root (not both) to ensure this is a function.

cosh�1 x = ln
����x+q

x2 � 1
����

Dom
�
cosh�1x

�
=[1;1); Im

�
cosh�1 x

�
= [0;1)

We �nish o¤ by obtaining an expression for tanh�1 x: Put y = tanh�1 x �!

x = tanh y =
exp y � exp (�y)
exp y + exp (�y)

;

x exp y + x exp (�y) = exp y � exp (�y)
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and as before multiply through by ey

x exp 2y + x = exp 2y � 1

exp 2y (1� x) = 1 + x �! exp 2y =
1 + x

1� x
taking logs gives

2y = ln

����1 + x1� x

���� =) tanh�1 x = 1
2 ln

����1 + x1� x

����
Dom

�
tanh�1x

�
=(�1; 1) ; Im

�
tanh�1 x

�
= R
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1.4 Di¤erentiation

A basic question asked is how fast does a function f (x) change with x? The
derivative of f (x) ; written

df

dx
: Leibniz notation

or

f 0 (x) : Lagrange notation,

is de�ned for each x as

f 0 (x) = lim
�x!0

f (x+ �x)� f (x)
�x

assuming the limit exists (it may not) and is unique.
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The term on the right hand side f(x+�x)�f(x)�x is called Newton quotient.

Di¤erentiability implies continuity but converse does not always hold.

There is another notation for a derivative due to Newton, if a function varies
with time, i.e. y = y (t) then a dot is used

�
y

We can also de�ne operator notation due to Euler. Write

D � d

dx
:

Then D operates on a function to produce its derivative, i.e. Df � df
dx:
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The earlier form of the derivative given is also called a forward derivative.
Other possible de�nitions of the derivative are

f 0 (x) = lim
�x!0

1

�x
(f (x)� f (x� �x)) backward

f 0 (x) = lim
�x!0

1

2�x
(f (x+ �x)� f (x� �x)) centred

Example: Di¤erentiating x3 from �rst principles:

f (x) = x3

f (x+ �x) = (x+ �x)3 = x3 + �x3 + 3x�x (x+ �x)

f (x+ �x)� f (x)
�x

=
�x3 + 3x�x (x+ �x)

�x
= �x2 + 3x2 + 3x�x

�! 3x2 as �x! 0;
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d

dx
xn = nxn�1;

d

dx
ex = ex;

d

dx
eax = aeax;

d

dx
log x =

1

x
;
d

dx
cosx = � sinx; d

dx
sinx = cosx;

d

dx
tanx = sec2 x

and so on. Take these as de�ned (standard results).

Examples:

f (x) = x5 ! f 0 (x) = 5x4

g (x) = e3x ! g0 (x) = 3e3x = 3g (x)
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Linearity: If � and � are constants and y = �f (x) + �g (x) then

dy

dx
=
d

dx
(�f (x) + �g (x)) = �f 0 (x) + �g0 (x) :

Thus if y = 3x2 � 6e�2x then

dy=dx = 6x+ 12e�2x:
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1.4.1 Product Rule

If y = f (x) g (x) then

dy

dx
= f 0 (x) g (x) + f (x) g0 (x) :

Thus if y = x3e3x then

dy=dx = 3x2e3x + x3
�
3e3x

�
= 3x2 (1 + x) e3x:

Page 44



1.4.2 Function of a Function Rule

Di¤erentiation is often a matter of breaking a complicated problem up into
simpler components. The function of a function rule is one of the main ways
of doing this.

If y = f (g (x)) then

dy

dx
= f 0 (g (x)) g0 (x) :

Thus if y = e4x
2
then

dy=dx = e4x
2
4:2x = 8xe4x

2
:
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So di¤erentiate the whole function, then multiply by the derivative of the
"inside" (g (x)) :

Another way to think of this is in terms of the chain rule.

Write y = f (g (x)) as

y = f (u) ; u = g (x) :

Then

dy

dx
=

d

dx
f (u) =

du

dx

d

du
f (u) = g0 (x) f 0 (u)

= g0 (x) f 0 (g (x)) :

Symbolically, we write this as
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dy

dx
=
du

dx

dy

du

provided u is a function of x alone.

Thus for y = e4x
2
; write u = 4x2; y = eu: Then

dy

dx
=
du

dx

dy

du
= 8xe4x

2
:

Further examples:

y = sinx3

y = sinu; where u = x3

y0 = cosu:3x2 �! y0 = 3x2 cosx3

y = tan2 x : this is how we write (tanx)2 so put

y = u2 where u = tanx

y0 = 2u: sec2 x �! y0 = 2 tanx sec2 x
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y = ln sinx: Put u = sinx �! y = lnu

dy

du
=
1

u
;
du

dx
= cosx

hence y0 = cotx:

Exercise: Di¤erentiate y = log tan2 x to show
dy

dx
= 2 secx cscx
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1.4.3 Quotient Rule

If y =
f (x)

g (x)
then

dy

dx
=
g (x) f 0 (x)� f (x) g0 (x)

(g (x))2
:

Thus if y = e3x=x2;

dy

dx
=
x23e3x � 2xe3x

x4
=
3x� 2
x3

e3x:

This is a combination of the product rule and the function of a function (or
chain) rule. It is very simple to derive:
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Starting with y =
f (x)

g (x)
and writing as y = f (x) (g (x))�1 we apply the

product rule

dy

dx
=
df

dx
(g (x))�1 + f (x)

d

dx
(g (x))�1

Now use the chain rule on (g (x))�1 ; i.e. write u = g (x) so

d

dx
(g (x))�1 =

du

dx

d

du
u�1 = g0 (x)

�
�u�2

�
= � g

0 (x)

g (x)2
:

Then

dy

dx
=

1

g (x)

df

dx
� f (x) g

0 (x)

g (x)2
=
f 0 (x)
g (x)

� f (x) g
0 (x)

g (x)2
:
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To simplify we note that the common denominator is g (x)2 hence

dy

dx
=
g (x) f 0 (x)� f (x) g0 (x)

g (x)2
:

Examples:

d

dx
(xex) = x

d

dx
(ex) + ex

d

dx
(x)

= xex + ex = ex (x+ 1) ;

d

dx
(ex=x) =

x (ex)0 � ex (x)0

(x)2
=
xex � ex

x2

=
ex

x2
(x� 1) ;

d

dx

�
e�x

2
�
=

d

dx
(eu) where u = �x2 ) du = �2xdx

= (�2x) e�x
2
:
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1.4.4 Implicit Di¤erentiation

Consider the function

y = ax

where a is a constant. If we take natural log of both sides

ln y = x ln a

and now di¤erentiate both sides by applying the chain rule to the left hand
side

1

y

dy

dx
= ln a

dy

dx
= y ln a

and replace y by ax to give

dy

dx
= ax ln a:
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This is an example of implicit di¤erentiation.

We could have obtained the same solution by initially writing ax as a combi-
nation of a log and exp

y = exp (ln ax) = exp (x ln a)

y0 =
d

dx

�
ex ln a

�
= ex ln a

d

dx
(x ln a)

= ax ln a:

Consider the earlier implicit function given by

4y4 � 2y2x2 � yx2 + x2 + 3 = 0:
The resulting derivative will also be an implicit function. Di¤erentiating gives

16y3y0 � 2
�
2yy0x2 + 2y2x

�
�
�
y0x2 + 2xy

�
= �2x�

16y3 � 2yx2 � x2
�
y0 = �2x+ 4y2x+ 2xy

y0 =
�2x+ 4y2x+ 2xy
16y3 � 2yx2 � x2
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1.4.5 Higher Derivatives

These are de�ned recursively;

f 00 (x) =
d2f

dx2
=
d

dx

�
df

dx

�
f 000 (x) =

d 3f

dx3
=
d

dx

 
d2f

dx2

!
and so on. For example:

f (x) = 4x3 �! f
0
(x) = 12x2 �! f 00 (x) = 24x

f 000 (x) = 24 �! f (iv) (x) = 0:

so for any nth degree polynomial

f (x) = anx
n + an�1x

n�1 + :::::::+ a1x+ a0

we have f (n+1) (x) = 0:
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Consider another two examples

f (x) = ex

f 0 (x) = ex �! f 00 (x) = ex
...

f (n) (x) = ex = f (x) :

g (x) = log x �! g0 (x) = 1=x
g00 (x) = �1=x2 �! g000 (x) = 2=x3:

Warning

Not all functions are di¤erentiable everywhere. For example, 1=x has the
derivative �1=x2 but only for x 6= 0:

Easy way is to "look for a hole", e.g. f (x) =
1

x� 2
does not exist at x = 2:

x = 2 is called a singularity for this function. We say f (x) is singular at the
point x = 2:
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1.4.6 Leibniz Rule

This is the �rst of two rules due to Leibniz. Here it is used to obtain the nth

derivative of a product y = uv, by starting with the product rule.

dy

dx
= u

dv

dx
+ v

du

dx
� uDv + vDu

then

y00 = uD2v + 2DuDv + vD2u

y000 = uD3v + 3DuD2v + 3D2uDv + vD3u

and so on. This suggests (can be proved by induction)

Dn (uv) = uDnv+
�
n
1

�
DuDn�1v+

�
n
2

�
D2uDn�2v+:::+

�
n
r

�
DruDn�rv+:::+vDnu

where
�
n
r

�
= n!
r!(n�r)!:
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Example: Find the nth derivative of y = x3eax:

Put u = x3 and v = eax and Dn (uv) � (uv)n ; so

(uv)n = uvn +
�
n
1

�
u1vn�1 +

�
n
2

�
u2vn�2 +

�
n
3

�
u3vn�3 + :::::::

u = x3; u1 = 3x
2; u2 = 6x; u3 = 6; u4 = 0

v = eax; v1 = ae
ax; v2 = a

2eax; ::::::::; vn = a
neax

therefore Dn
�
x3eax

�
=

x3aneax +
�
n
1

�
3x2an�1eax +

�
n
2

�
6xan�2eax +

�
n
3

�
6an�3eax

= eax
�
x3an + n3x2an�1 + n (n� 1) an�23x+ n (n� 1) (n� 2) an�3

�
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1.4.7 Further Limits

This will be an application of di¤erentiation. Consider the limiting case

lim
x!a

f (x)

g (x)
� 0

0
or
1
1

This is called an indeterminate form. Then L�Hospitals rule states

lim
x!a

f (x)

g (x)
= lim
x!a

f 0 (x)
g0 (x)

= ::::::: = lim
x!a

f (r) (x)

g(r) (x)

for r such that we have the indeterminate form 0=0: If for r + 1 we have

lim
x!a

f (r+1) (x)

g(r+1) (x)
! A

where A is not of the form 0=0 then

lim
x!a

f (x)

g (x)
� lim
x!a

f (r+1) (x)

g(r+1) (x)
:
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Note: Very important to verify quotient has this indeterminate form before
using L�Hospitals rule. Else we end up with an incorrect solution.

Examples:

1.

lim
x!0

cosx+ 2x� 1
3x

� 0

0

So di¤erentiate both numerator and denominator �!

lim
x!0

d
dx (cosx+ 2x� 1)

d
dx (3x)

= lim
x!0

� sinx+ 2
3

6= 0

0
! 2

3

2. lim
x!0

ex + e�x � 2
1� cos 2x

; quotient has form 0=0: By L�Hospital�s rule we have

lim
x!0

ex � e�x

2 sin 2x
; which has indeterminate form 0=0 again for 2nd time, so
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we apply L�Hospital�s rule again

lim
x!0

ex + e�x

4 cos 2x
=
1

2
:

3. lim
x!1

x2

lnx
� 1
1
) use L�Hospital , so lim

x!1
2x

1=x
!1

4. lim
x!1

e3x

lnx
� 1
1
) lim

x!13xe
3x !1

5. lim
x!1x

2e�3x � 0:1; so we convert to form1=1 by writing lim
x!1

x2

e3x
;

and now use L�Hospital (di¤erentiate twice), which gives lim
x!1

2

9e3x
! 0
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6. lim
x!0

sinx

x
� lim
x!0

cosx � 1

What is example 6: saying?

When x is very close to 0 then sinx � x: That is sinx can be approximated
with the function x for small values.
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1.5 Taylor Series

Many functions are so complicated that it is not easy to see what they look
like. If we only want to know what a function looks like locally , we can
approximate it by simpler functions: polynomials. The crudest approximation
is by a constant: if f (x) is continuous at x0;

f (x) t f (x0)

for x near x0:

Before we consider this in a more formal manner we start by looking at a simple
motivating example:

Consider f (x) = ex:
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Suppose we wish to approximate this function for very small values of x (i.e.
x �! 0). We know at x = 0; dfdx = 1: So this is the gradient at x = 0: We
can �nd the equation of the line that passes through a point (x0; y0) using

y � y0 = m (x� x0) :

Here m = df
dx = 1; x0 = 0; y0 = 1; so y = 1 + x; is a polynomial. What

information have we ascertained from this?

If x �! 0 then the point (x; 1 + x) on the tangent is close to the point
(x; ex) on the graph f (x) and hence
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ex � 1 + x

­5
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­4 ­3 ­2 ­1 0 1 2 3 4
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Suppose now that we are not that close to 0: We look for a second degree
polynomial (i.e. quadratic)

g (x) = ax2 + bx+ c �! g0 = 2ax+ b �! g00 = 2a

If we want this parabola g (x) to have

(i) same y intercept as f :

g (0) = f (0) =) c = 1

(ii) same tangent as f

g0 (0) = f 0 (0) =) b = 1

(iii) same curvature as f

g00 (0) = f 00 (0) =) 2a = 1
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This gives

ex � g (x) = 1

2
x2 + x+ 1

0

5

10

15

20

25

­4 ­3 ­2 ­1 0 1 2 3 4

Page 66



Moving further away we would look at a third order polynomial h (x) which
gives

ex � h (x) = 1

3!
x3 +

1

2!
x2 + x+ 1

­5

0

5

10

15

20

25

­4 ­3 ­2 ­1 0 1 2 3 4

and so on.
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Better is to approximate by the tangent at x0: This makes the approximation
and its derivative agree with the function:

f (x) t f (x0) + (x� x0) f 0 (x0) :

Better still is by the best �t parabola (quadratic), which makes the �rst two
derivatives agree:

f (x) t f (x0) + (x� x0) f 0 (x0) +
1

2
(x� x0)2 f 00 (x0) :

This process can be continued inde�nitely as long as f can be di¤erentiated
often enough.

The nth term is

1

n!
f (n) (x0) (x� x0)n ;
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where f (n) means the nth derivative of f and n! = n: (n� 1) : : : 2:1 is
the factorial.

x0 = 0 is the special case, called Maclaurin Series.

Examples:

Expanding about the origin x0 = 0;

ex = 1 + x+
x2

2!
+
x3

3!
+ :::+

xn

n!

Near 0; the logarithm looks like

log (1 + x) = x� x
2

2
+
x3

3
� x

4

4
+ :::+ (�1)n xn+1

(n+ 1)!
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How can we obtain this? Put f (x) = log (1 + x) ; then f (0) = 0

f 0 (x) = 1
1+x f 0 (0) = 1

f 00 (x) = � 1
(1+x)2

f 00 (0) = �1

f 000 (x) = 2
(1+x)3

f 000 (0) = 2

f (4) (x) = � 6
(1+x)4

f (4) (0) = �6

Thus

f (x) =
1X
n=0

f (n) (0)

n!
xn

= 0 +
1

1!
x+

(�1)
2!

x2 +
1

3!
:2x3 +

(�6)
4!

x4 + :::::

= x� x
2

2
+
x3

3
� x

4

4
+ :::
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Taylor�s theorem, in general, is this : If f (x) and its �rst n derivatives exist
(and are continuous) on some interval containing the point x0 then

f (x) = f (x0) +
1
1!f

0 (x0) (x� x0) +
1
2!f

00 (x0) (x� x0)2 + :::
+ 1
(n�1)!f

(n�1) (x0) (x� x0)n�1 +Rn (x)

where Rn (x) = (1=n!) f (n) (�) (x� x0)n ; � is some (usually unknown)
number between x0 and x and f (n) is the nth derivative of f .

We can expand about any point x = a; and shift this point to the origin, i.e.
x� x0 � 0 and we express in powers of (x� x0)n :

Page 71



So for f (x) = sinx about x = �=4 we will have

f (x) =
1X
n=0

f (n)
�
�
4

�
n!

(x� �=4)n

where f (n)
�
�
4

�
is the nth derivative of sinx at x0 = �=4:

As another example suppose we wish to expand log (1 + x) about x0 = 2; i.e.
x� 2 = 0 then

f (x) =
1X
n=0

1

n!
f (n) (2) (x� 2)n

where f (n) (2) is the nth derivative of log (1 + x) evaluated at the point
x = 2:

Note that log (1 + x) does not exist for x = �1:

Page 72



1.5.1 The Binomial Expansion

The Binomial Theorem is the Taylor expansion of (1 + x)n where n is a
positive integer. It reads:

(1 + x)n = 1 + nx+
n (n� 1)

2!
x2 +

n (n� 1) (n� 2)
3!

x3 + ::: :

We can extend this to expressions of the form

(1 + ax)n = 1 + n (ax) +
n(n�1)
2! (ax)2 +

n(n�1)(n�2)
3! (ax)3 + ::: :

(p+ ax)n =

"
p

 
1 +

a

p
x

!#n
= pn

"
1 + n

 
a

p
x

!
+ ::::::::

#
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The binomial coe¢ cients are found in Pascal�s triangle:

1 (n=0) (1 + x)0

1 1 (n=1) (1 + x)1

1 2 1 (n=2) (1 + x)2

1 3 3 1 (n=3) (1 + x)3

1 4 6 4 1 (n=4) (1 + x)4

1 5 10 10 5 1 (n=5) (1 + x)5

and so on ...
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As an example consider:

(1 + x)3 n = 3) 1 3 3 1 ) (1 + x)3 = 1 + 3x+ 3x2 + x3

(1 + x)5 n = 5! (1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5:

If n is not an integer the theorem still holds but the coe¢ cients are no longer
integers. For example,

(1 + x)�1 = 1� x+ x2 � x3 + ::: :

and

(1 + x)1=2 = 1 +
1

2
x+

�
1

2

��
�1
2

�
x2

2!
::: :
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(a+ b)k = ak
h
1 + b

a

ik
=

ak
�
1 + kba�1 + k(k�1)

2! b2a�2 + k(k�1)(k�2)
3! b3a�3 + ::

�

= ak + kbak�1 + k(k�1)
2 b2ak�2 + k(k�1)(k�2)

3! b3ak�3 + ::

Example: We looked at lim
x!0

sinx

x
! 1 (by L�Hospital). We can also do this

using Taylor series:

lim
x!0

sinx

x
� lim

x!0
x� x3=3! + x5=5! + ::::

x

� lim
x!0

�
1� x2=3! + x4=5! + ::::

�
! 1:
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1.6 Integration

1.6.1 The Inde�nite Integral

The inde�nite integral of f (x) ;Z
f (x) dx;

is any function F (x) whose derivative equals f (x). Thus if

F (x) =
Z
f (x) dx then

dF

dx
(x) = f (x) :

Since the derivative of a constant, C; is zero (dC=dx = 0) ; the inde�nite
integral of f (x) is only determined up to an arbitrary constant.
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If
dF

dx
= f (x) then

d

dx
(F (x) + C) =

dF

dx
(x) +

dC

dx
=
dF

dx
(x) = f (x) :

Thus we must always include an arbitrary constant of integration in an inde�nite
integral.

Simple examples are

Z
xndx =

1

n+ 1
xn+1 + C (n 6= �1) ;Z

dx

x
= log (x) + C;

Z
eaxdx =

1

a
eax + C (a 6= 0) ;Z

cos axdx =
1

a
sin ax+ C;

Z
sin axdx = �1

a
cos ax+ C
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Linearity

Integration is linear:Z
(�f (x) + �g (x)) dx = �

Z
f (x) dx+ �

Z
g (x) dx

for constants A and B: Thus, for example

Z �
Ax2 +Bx3

�
dx = A

Z
x2dx+B

Z
x3dx

=
A

3
x3 +

B

4
x4 + C;

Z
(3ex + 2=x) dx = 3

Z
exdx+ 2

Z
dx

x
= 3ex + 2 log (x) + C;

and so forth.
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1.6.2 The De�nite Integral

The de�nite integral, Z b
a
f (x) dx;

is the area under the graph of f (x) ; between x = a and x = b; with
positive values of f (x) giving positive area and negative values of f (x)
contributing negative area. It can be computed if the inde�nite integral is
known. For exampleZ 3

1
x3dx =

�
1

4
x4
�3
1
=
1

4

�
34 � 14

�
= 20;

Z 1
�1
exdx = [ex]1�1 = e� 1=e:

Note that the de�nite integral is also linear in the sense thatZ b
a
(Af (x) +Bg (x)) dx = A

Z b
a
f (x) dx+B

Z b
a
g (x) dx:
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Note also that a de�nite integralZ b
a
f (x) dx

does not depend on the variable of integration, x in the above, it only depends
on the function f and the limits of integration (a and b in this case); the
area under a curve does not depend on what we choose to call the horizontal
axis.

So Z b
a
f (x) dx =

Z b
a
f (y) dy =

Z b
a
f (z) dz:

We should never confuse the variable of integration with the limits of integra-
tion; a de�nite integral of the formZ x

a
f (x) dx;

use dummy variable.

Page 81



If a < b < c then

Z c
a
f (x) dx =

Z b
a
f (x) dx+

Z c
b
f (x) dx:

Also

Z a
c
f (x) dx = �

Z c
a
f (x) dx:
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1.6.3 Integration by Substitution

This involves the change of variable and used to evaluate integrals of the formZ
g (f (x)) f 0 (x) dx;

and can be evaluated by writing z = f (x) so that dz=dx = f 0 (x) or
dz = f 0 (x) dx: Then the integral becomesZ

g (z) dz:

Examples: Z
x

1 + x2
dx : z = 1 + x2 �! dz = 2xdxZ

x

1 + x2
dx =

1

2
log (z) + C =

1

2
log

�
1 + x2

�
+ C

= log
�q

1 + x2
�
+ C
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R
xe�x

2
dx : z = �x2 �! dz = �2xdxZ

xe�x
2
dx = �1

2

Z
ezdz

= �1
2
ez + C = �1

2
e�x

2
+ C

Z
1

x
log (x) dx =

Z
z dz =

1

2
z2 + C

=
1

2
(log (x))2 + C

with z = log (x) so dz = dx=x and

Z
ex+e

x
dx =

Z
exee

x
dx =

Z
ezdz

= ez + C = ee
x
+ C

with z = ex so dz = exdx:
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The method can be used for de�nite integrals too. In this case it is usually more
convenient to change the limits of integration at the same time as changing
the variable; this is not strictly necessary, but it can save a lot of time.

For example, consider

Z 2
1
ex
2
2xdx:

Write z = x2; so dz = 2xdx: Now consider the limits of integration; when
x = 2; z = x2 = 4 and when x = 1; z = x2 = 1: Thus

Z x=2
x=1

ex
2
2xdx =

Z z=4
z=1

ezdz

= [ez]z=4z=1 = e
4 � e1:
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Further examples: consider

Z x=2
x=1

2xdx

1 + x2
:

In this case we could write z = 1 + x2; so dz = 2xdx and x = 1
corresponds to z = 2, x = 2 corresponds to z = 5; and

Z x=2
x=1

2x

1 + x2
dx =

Z z=5
z=2

dz

z

= [ln (z)]z=5z=2 = log (5)� ln (2)
= ln (5=2)

We can solve the same problem without change of limit, i.e.n
ln
���1 + x2���ox=2

x=1
�! ln 5� ln 2 = ln 5=2:
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Or consider

Z x=e
x=1

2
log (x)

x
dx

in which case we should choose z = log (x) so dz = dx=x and x = 1

gives z = 0; x = e gives z = 1 and so

Z x=e
x=1

2
log (x)

x
dx =

Z z=1
z=0

2zdz =
h
z2
iz=1
z=0

= 1:
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When we make a substitution like z = f (x) we are implicitly assuming that
dz=dx = f 0 (x) is neither in�nite nor zero. It is important to remember this
implicit assumption.

Consider the integralZ 1
�1
x2dx =

1

3

h
x3
ix=1
x=�1 =

1

3
(1� (�1)) = 2

3
:

Now put z = x2 so dz = 2xdx or dz = 2
p
z dx and when x = �1;

z = x2 = 1 and when x = 1; z = x2 = 1; soZ x=1
x=�1

x2dx =
1

2

Z z=1
z=1

dz
p
z
= 0

as the area under the curve 1=
p
z between z = 1 and z = 1 is obviously

zero.
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It is clear that x2 > 0 except at x = 0 and therefore thatZ 1
�1
x2dx =

2

3

must be the correct answer. The substitution z = x2 gaveZ x=1
x=�1

x2dx =
1

2

Z z=1
z=1

dz
p
z
= 0

which is obviously wrong. So why did the substitution fail?

It failed because f 0 (x) = dz=dx = 2x changed signs between x = �1
and x = 1: In particular, dz=dx = 0 at x = 0; the function z = x2 is
not invertible for �1 � x � 1:

Moral: when making a substitution make sure that dz=dx 6= 0:
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1.6.4 Integration by Parts

This is based on the product rule. In usual notation, if y = u (x) v (x) then

dy

dx
=
du

dx
v + u

dv

dx
so that

du

dx
v =

dy

dx
� udv

dx

and hence integratingZ
du

dx
vdx =

Z
dy

dx
dx�

Z
u
dv

dx
dx = y (x)�

Z
u
dv

dx
dx+ C

or Z
du

dx
vdx = u (x) v (x)�

Z
u (x)

dv

dx
dx+ C

i.e. Z
u0vdx = uv �

Z
uv0dx+ C
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This is useful, for instance, if v (x) is a polynomial and u (x) is an exponential.

How can we use this formula? Consider the exampleZ
xexdx

Put

v = x u0 = ex

v0 = 1 u = ex

hence Z
xexdx = uv �

Z
u
dv

dx
dx

= xex �
Z
ex:1dx = ex (x� 1) + C

The formula we are using is the same asZ
vdu = uv �

Z
udv + C
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Now using the same example
R
xexdx

v = x du = exdx
dv = dx u = ex

and Z
vdu = uv �

Z
udv = xex �

Z
exdx

= ex (x� 1) + C
Another example Z

x2|{z}
v(x)

e2x|{z}
u0
dx =

1

2
x2e2x| {z }
uv

�
Z
xe2x| {z }
uv0

dx+ C

and using integration by parts againZ
xe2xdx =

1

2
xe2x � 1

2

Z
e2xdx =

1

4
(2x� 1) e2x +D

so Z
x2e2xdx =

1

4

�
2x2 � 2x+ 1

�
e2x + E:
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1.6.5 Reduction Formula

Consider the de�nite integral problemZ 1
0
e�ttndt = In

put v = tn and u0 = e�t �! v0 = ntn�1 and u = �e�t

�
h
e�ttn

i1
0
+ n

Z 1
0
e�ttn�1dt

= �
h
e�ttn

i1
0
+ nIn�1

In = nIn�1
= n (n� 1) In�2 = ::::::: = n!I0

where I0 =
Z 1
0
e�tdt = 1

) In = n!; n 2 Z+

In is called the Gamma Function.
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1.6.6 Other Results

Z
f 0 (x)
f (x)

dx = ln jf (x)j+ C

e.g. Z
3

1 + 3x
dx = ln j1 + 3xj+ C

Z
1

2 + 7x
dx =

1

7

Z
7

2 + 7x
dx =

1

7
ln j2 + 7xj+ C

This allows us to state a standard resultZ
1

a+ bx
dx =

1

b
ln ja+ bxj+ C

How can we re-do the earlier exampleZ
x

1 + x2
dx;

which was initially treated by substitution?
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Partial Fractions Consider a fraction where both numerator and denomina-
tor are polynomial functions, i.e.

h (x) =
f (x)

g (x)
�

NP
n=0

anxn

MP
n=0

bnxn

where deg f (x) < deg g (x) , i.e. N < M: Then h (x) is called a partial
fraction. Suppose

c

(x+ a) (x+ b)
� A

(x+ a)
+

B

(x+ b)

then writing

c = A (x+ b) +B (x+ a)

and solving for A and B allows us to obtain partial fractions.
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The simplest way to achieve this is by setting x = �b to obtain the value of
B; then putting x = �a yields A:

Example:
1

(x� 2) (x+ 3)
: Now write

1

(x� 2) (x+ 3)
� A

x� 2
+

B

x+ 3

which becomes

1 = A (x+ 3) +B (x� 2)

Setting x = �3! B = �1=5; x = 2! A = 1=5: So

1

(x� 2) (x+ 3)
� 1

5 (x� 2)
� 1

5 (x+ 3)
:
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There is another quicker and simpler method to obtain partial fractions, called
the "cover-up" rule. As an example consider

x

(x� 2) (x+ 3)
� A

x� 2
+

B

x+ 3
:

Firstly, look at the term
A

x� 2
: The denominator vanishes for x = 2; so

take the expression on the LHS and "cover-up" (x� 2) : Now evaluate the
remaining expression, i.e.

x

(x+ 3)
for x = 2; which gives 2=5: So A = 2=5:

Now repeat this, by noting that
B

x+ 3
does not exist at x = �3: So cover

up (x+ 3) on the LHS and evaluate
x

(x� 2)
for x = �3; which gives

B = 3=5:
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Any rational expression
f (x)

g (x)
(with degree of f(x) < degree of g(x)) such

as above can be written

f (x)

g (x)
� F1 + F2 + :::::::: + Fk

where each Fi has form

A

(px+ q)m
or

Cx+D�
ax2 + bx+ c

�n
where

A

(px+ q)m
is written as

A1
(px+ q)

+
A2

(px+ q)2
+ :::::: +

A

(px+ q)m
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and
Cx+D�

ax2 + bx+ c
�n becomes
C1x+D1
ax2 + bx+ c

+ ::::::+
Cnx+Dn�

ax2 + bx+ c
�n
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Examples:

3x� 2
(4x� 3) (2x+ 5)3

� A

4x� 3
+

B

2x+ 5
+

C

(2x+ 5)2
+

D

(2x+ 5)3

4x2 + 13x� 9
x (x+ 3) (x� 1)

� A

x
+

B

x+ 3
+

C

(x� 1)

3x3 � 18x2 + 29x� 4
(x+ 1) (x� 2)3

� A

x+ 1
+

B

x� 2
+

C

(x� 2)2
+

D

(x� 2)3

5x2 � x+ 2�
x2 + 2x+ 4

�2
(x� 1)

� Ax+B

x2 + 2x+ 4
+

Cx+D�
x2 + 2x+ 4

�2 + E

x� 1

x2 � x� 21�
x2 + 4

�2
(2x� 1)

� Ax+B

x2 + 4
+

Cx+D�
x2 + 4

�2 + E

2x� 1
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1.7 Complex Numbers

A complex number z is de�ned by z = x + iy where x; y 2 R and
i =

p
�1: It follows that i2 = �1:

We call the x� axis the real line and the y� axis the imaginary line.

z may also be expressed in polar co-ordinate form as

z = r (cos � + i sin �)

where r is always positive and � counter-clockwise from Ox:

So x = r cos �; y = r sin �
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x

y
r

θ

z = x+iy

modulus of z denoted jzj is de�ned jzj = r =

+
q
x2 + y2; argument � = arctan yx

The set of all complex numbers is denoted C; and for any complex number z
we write z 2 C: We can think of R � C:

We de�ne the complex conjugate of z by
_
z where

_
z = x� iy:

z is the re�ection of z in the real line. So for example if z = 1 � 2i; then
z = 1 + 2i:
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1.7.1 Arithmetic

Given any two complex numbers z1 = a + ib; z2 = c + id the following
de�nitions hold:

Addition & Subtraction z1 � z2 = (a� c) + i (b� d)

Multiplication z1 � z2 = (ac� bd) + i (ad+ bc)

Division
z1
z2
=
a+ ib

c+ id
=
(ac+ bd) + i (bc� ad)

c2 + d 2
=
(ac+ bd)

c2 + d2
+i
(bc� ad)
c2 + d2

here we have simply multiplied by
c� id
c� id

and note that (c+ id) (c� id) =

c2 + d2
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Examples

z1 = 1 + 2i; z2 = 3� i

z1+z2 = (1 + 3)+ i (2� 1) = 4+ i ; z1�z2 = (1� 3)� i (2� (�1)) =
�2 + 3i

z1 � z2 = (1:3� 2:� 1) + i (1:� 1 + 2:3) = 5 + 5i

z1
z2
=
1 + 2i

3� i
:
3 + i

3 + i
=
1

10
+ i

7

10
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1.7.2 Complex Conjugate Identities

1.
�_
z
�
= z

2. (z1 + z2) = z1 +
_
z2

3. (z1z2) =
_
z1
_
z2

4. z +
_
z = 2x = 2Re z ) Re z =

z +
_
z

2

5. z �
_
z = 2iy = 2i Im z ) Im z =

z �
_
z

2i

6. z:
_
z = (x+ iy) (x� iy) = jzj2
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7. jzj2 = z(z) = zz = jzj2 ) jzj = jzj

8.
z1
z2
=
z1
z2
:
z2
z2
=
z1z2

jz2j2

9. jz1z2j2 = jz1j2 jz2j2
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1.7.3 Polar Form

We return to the polar form representation of complex numbers. We now
introduce a new notation. If z 2 C; then

z = r (cos � + i sin �) = rei�:

Hence

ei� = cos � + i sin �;

which is a special relationship called Euler�s Identity. Knowing sin � is an odd
function gives e�i� = cos � � i sin �: Referring to the earlier polar coordinate
�gure, we have:

jzj = r; arg z = �

If

z1 = r1e
i�1 and z2 = r2e

i�2
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then

z1z2 = r1r2e
i(�1+�2) ) jz1z2j = r1r2 = jz1j jz2j

arg (z1z2) = �1 + �2 = arg (z1) + arg (z2) :

If z2 6= 0 then

z1
z2
=
r1e

i�1

r2ei�2
=
r1
r2
ei(�1��2)

and hence �����z1z2
����� = jz1j

jz2j
=
r1
r2

arg

 
z1
z2

!
= �1 � �2 = arg (z1)� arg (z2)
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Euler�s Formula Let � be any a1ngle, then

exp (i�) = cos � + i sin �:

We can prove this by considering the Taylor series for exp (x) ; sinx; cosx

ex = 1 + x+
x2

2!
+
x3

3!
+ :::::::::::::+

xn

n!
(a)

sinx = x� x
3

3!
+
x5

5!
� :::::::::::::+ (�1)n x2n+1

(2n+ 1)!
(b)

cosx = 1� x
2

2!
+
x4

4!
� :::::::::::::+ (�1)n x2n

(2n)!
(c)
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Replacing x by the purely imaginary quantity i� in (a), we obtain

ei� = 1 + i� +
(i�)2

2!
+
(i�)3

3!
+ :::::::::::::+

(i�)n

n!

=

 
1� �

2

2!
+
�4

4!
� �

6

6!
+ ::::::::::::

!
+

i

 
� � �

3

3!
+
�5

5!
� :::::::::

!
= cos � + i sin �

Note: When � = � then exp i� = �1 and � = �=2 gives exp (i�=2) = i:

Page 110



We can apply Euler�s formula to integral problems. Consider the problemZ
ex sinxdx

which was simpli�ed using the integration by parts method. We know Re ei� =
cos �; so the above becomesZ

ex Im eixdx =
Z
Im e(i+1)xdx = Im 1

1+ie
(i+1)x

= ex Im 1
1+i

�
eix
�
= ex Im 1�i

(1+i)(1�i)
�
eix
�

= 1
2e
x Im (1� i)

�
eix
�
= 1
2e
x Im

�
eix � ieix

�
= 1

2e
x Im (cosx+ i sinx� i cosx+ sinx)

= 1
2e
x (sinx� cosx)

Exercise: Apply this method to solving
Z
ex cosxdx.
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1.8 Functions of Several Variables: Multivariate Calculus

A function can depend on more than one variable. For example, the value of
an option depends on the underlying asset price S (for �spot�or �share�) and
time t: We can write its value as V (S; t) :

The value also depends on other parameters such as the exercise price E;

interest rate r and so on. Although we could write V (S; t; E; r; :::) ; it is
usually clearer to leave these other variables out.

Depending on the application, the independent variables may be x and t for
space and time, or two space variables x and y; or S and t for price and
time, and so on.
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Consider a function z = f (x; y) ; which can be thought of as a surface in
x; y; z space. We can think of x and y as positions on a two dimensional
grid (or as spacial variables) and z as the height of a surface above the (x; y)
grid.

How do we di¤erentiate a function f (x; y) of two variables? What if there
are more independent variables?

The partial derivative of f (x; y) with respect to x is written

@f

@x

(note @ and not d ). It is the x� derivative of f with y held �xed:

@f

@x
= lim
�x!0

f (x+ �x; y)� f (x; y)
�x

:
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The other partial derivative, @f=@y; is de�ned similarly but now x is held
�xed:

@f

@y
= lim
�y!0

f (x; y + �y)� f (x; y)
�y

:

@f

@x
and

@f

@y

are sometimes written as fx and fy:

Examples

If

f (x; y) = x+ y2 + xe�y
2

then
@f

@x
= fx = 1 + 0 + 1 � e�y

2
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@f

@y
= fy = 0 + 2y + x � (�2y) e�y

2
:

The convention is, treat the other variable like a constant.
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Higher Derivatives

Like ordinary derivatives, these are de�ned recursively:

@2f

@x2
= fxx =

@

@x

�
@f

@x

�
;

@2f

@y2
= fyy =

@

@y

 
@f

@y

!
:

and

@2f

@x@y
= fxy =

@

@y

�
@f

@x

�
;

@2f

@y@x
= fyx =

@

@x

 
@f

@y

!
:
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If f is well-behaved, the �mixed�partial derivatives are equal:

fxy = fyx:

i.e. the second order derivatives exist and are continuous.

Example:

With f (x; y) = x+ y2 + xe�y
2
as above,

fx = 1 + e
�y2

so

fxx = 0; fxy = �2ye�y
2
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Also

fy = 2y � 2xye�y
2

so

fyx = �2ye�y
2
; fyy = 2� 2xe�y

2
+ 4xy2e�y

2

Note that fxy = fyx:
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1.8.1 The Chain Rule I

Suppose that x = x (s) and y = y (s) and F (s) = f (x (s) ; y (s)) :

Then

dF

ds
(s) =

@f

@x
(x (s) ; y (s))

dx

ds
(s) +

@f

@y
(x (s) ; y (s))

dy

ds
(s)

Thus if f (x:y) = x2 + y2 and x (s) = cos (s) ; y (s) = sin (s) we �nd
that F (s) = f (x (s) ; y (s)) has derivative

dF

ds
= � sin (s) � 2 cos (s) + cos (s) � 2 sin (s) = 0

which is what it should be, since F (s) = cos2 (s) + sin2 (s) = 1;

i.e. a constant.
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Example: Calculate
dz

dt
at t = �=2 where

z = exp
�
xy2

�
x = t cos t; y = t sin t:

Chain rule gives

dz

dt
=

@z

@x

dx

dt
+
@z

@y

dy

dt

= y2 exp
�
xy2

�
(�t sin t+ cos t) +

2xy exp
�
xy2

�
(sin t+ t cos t) :

At t = �=2 x = 0; y = �=2) dz

dt

����
t=�=2

= ��
3

8
:

Page 120



1.8.2 The Chain Rule II

Suppose that x = x (u; v) ; y = y (u; v) and that F (u; v) = f (x (u; v) ; y (u; v)) :
Then

@F

@u
=
@x

@u

@f

@x
+
@y

@u

@f

@y
and

@F

@v
=
@x

@v

@f

@x
+
@y

@v

@f

@y
:

This is sometimes written as

@

@u
=
@x

@u

@

@x
+
@y

@u

@

@y
;

@

@v
=
@x

@v

@

@x
+
@y

@v

@

@y
:

so is essentially a di¤erential operator.

Page 121



Example:

T = x3 � xy + y3 where x = r cos �; y = r sin �

@T

@r
=

@T

@x

@x

@r
+
@T

@y

@y

@r
= cos �

�
3x2 � y

�
+ sin �

�
3y2 � x

�
= cos �

�
3r2 cos2 � � r sin �

�
+

sin �
�
3r2 sin2 � � r cos �

�
= 3r2

�
cos3 � + sin3 �

�
� 2r cos � sin �

= 3r2
�
cos3 � + sin3 �

�
� r sin 2�:

Page 122



@T

@�
=

@T

@x

@x

@�
+
@T

@y

@y

@�

= �r sin �
�
3x2 � y

�
+ r cos �

�
3y2 � x

�
= �r sin �

�
3r2 cos2 � � r sin �

�
+

r cos �
�
3r2 sin2 � � r cos �

�
= 3r3 cos � sin � (sin � � cos �) +

r2
�
sin2 � � cos2 �

�
:

= r2 (sin � � cos �) (3r cos � sin � + sin � + cos �)

Page 123



1.8.3 Taylor for two Variables

Assuming that a function f (x; t) is di¤erentiable enough, near x = x0;

t = t0;

f (x; t) = f (x0; t0) + (x� x0) fx (x0; t0) +
(t� t0) ft (x0; t0)

+
1

2

264 (x� x0)2 fxx (x0; t0)
+2 (x� x0) (t� t0) fxt (x0; t0)

+ (t� t0)2 ftt (x0; t0)

375+ ::::

That is,

f (x; t) = constant+ linear+ quadratic

+::::

The error in truncating this series after the second order terms tends to zero
faster than the included terms. This result is particularly important for Itô�s
lemma in Stochastic Calculus.
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Suppose a function f = f (x; y) and both x; y change by a small amount, so
x �! x+ �x and y �! y+ �y; then we can examine the change in f using
a two dimensional form of Taylor

f (x+ �x; y + �y) = f (x; y) + fx�x+ fy�y +
1

2
fxx�x

2 +
1

2
fyy�y

2 +

fxy�x�y +O
�
�x2; �y2

�
:

By taking f (x; y) to the lhs, writing

df = f (x+ �x; y + �y)� f (x; y)

and considering only linear terms, i.e.

df =
@f

@x
�x+

@f

@y
�y

we obtain a formula for the di¤erential or total change in f:
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