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1 Probability

1.1 Preliminaries

e An experiment is a repeatable process that gives
rise to a number of outcomes.

e An event is a collection (or set) of one or more out-
comes.

e An sample space is the set of all possible outcomes
of an experiment, often denoted (2.



Example

In an experiment a dice is rolled and the number ap-
pearing on top is recorded.

Thus
) =41,2.8.4,5, 6}

If £y, Ey, E5 are the events even, odd and prime occur-
ring, then

E, ={2,4,6}
E, ={1, 3, 5}
E5; ={2,3,5}



1.1.1 Probability Scale

Probability of an Event E occurring i.e. P(E) is less
than or equal to 1 and greater than or equal to 0.

0< PE)<1

1.1.2 Probability of an Event

The probability of an event occurring is defined as:

The number of ways the event can occur
Total number of outcomes

P(E) =



Example

A fair dice is tossed. The event A is defined as the
number obtained is a multiple of 3. Determine P(A)

0 ={1,2,3,4,5,6}
A ={3,6)

. P(A) =

(@2 )

1.1.3 The Complimentary Event E’

An event E occurs or it does not. If E is the event then
E'’ is the complimentary event, i.e. not £ where

P(E)=1— P(E)



1.2 Probability Diagrams

It is useful to represent problems diagrammatically. Three
useful diagrams are:

e Sample space or two way table
e Tree diagram

e Venn diagram



Example

Two dice are thrown and their numbers added to-
gether. What is the probability of achieving a total of
87

Die 1

Die 2




Example

A bag contains 4 red, 5 yellow and 11 blue balls. A
ball is pulled out at random, its colour noted and then

replaced. What is the probability of picking a red and a
blue ball in any order.



First Choice Second Choice

4 red
20_~7
20
red blue
= 5
20 50 yellow
4 red
3 20 —"14 P(Red and Blue) or P(Blue and Red) =
e blue 20 blue 4 1y 1 4y 1
5 20 20 20 20 50
S yellow

red

blue

R
20 11
yellow 20
\
20

yellow



Venn Diagram 3

A Venn diagram is a way of representing data sets or
events. Consider two events A and B. A Venn diagram
to represent these events could be:

e AURB " A or B” e ANKB ” A and B”
A B |o A B

Addition Rule:
P(AUB) =P(A)+ P(B) — P(AN B)

r P(ANB) = P(A) + P(B) — P(AU B)



Example

In a class of 30 students, 7 are in the choir, 5 are in
the school band and 2 students are in the choir and the

school band. A student is chosen at random from the
class. Find:

a) The probability the student is not in the band

b) The probability the student is not in the choir nor in
the band

2
P(not in band) = °+20

P(not in either) = — =




Example

A vet surveys 100 of her clients, she finds that: (vi) 11 own dogs and tropical fish

(i) 25 own dogs (vii) 7 own dogs, cats and tropical fish

(ii) 53 own cats If she picks a client at random, Find:

(iii) 40 own tropical fish a) P(Owns dogs only)

(iv) 15 own dogs and cats b) P(Does not own tropical fish)

(v) 10 own cats and tropical fish c¢) P(Does not own dogs, cats or tropical fish)



P(Dogs only) = %

6+8+35+11 60

100 ~ 100
11

100

P(Does not own tropical fish) =

P(Does not own dogs, cats or tropical fish) =



1.3 Conditional Probability

The probability of an event B may be different if you
know that a dependent event A has already occurred.

Example

Consider a school which has 100 students in its sixth
form. 50 students study mathematics, 29 study biology
and 13 study both subjects. You walk into a biology class
and select a student at random. What is the probability
that this student also studies mathematics?

P(study maths given they study biology) = P(M|B) = %

In general, we have:

P(AN B)
P(B)

P(A|B) =

or, Multiplication Rule:

P(AN B) = P(A|B) x P(B)




Example

You are dealt exactly two playing cards from a well
shuffled standard 52 card deck. What is the probability
that both your cards are Kings 7

Tree Diagram!
4 3 1

P(KDK)=5—2x5—1=ﬁ=z0.5%
or
P(KNK) = P(2nd is King | first is king) x P(first is king) = %x%
We know,
P(ANB)=P(BNA)
SO
P(ANB) = P(A|B) x P(B)
P(BNA) = P(B|A) x P(A)
L& or

P(A|B) x P(B) = P(B|A) x P(A)

Bayes’ Theorem:

P(B|A) =

P(A|B) x P(B)

P(A)



Example

You have 10 coins in a bag. 9 are fair and 1 is double
headed. If you pull out a coin from the bag and do not
examine it. Find:

1. Probability of getting 5 heads in a row

2. Probability that if you get 5 heads the you picked
the double headed coin

P(5heads) = P(5heads|N) x P(N)+ P(5heads|H) x P(H)

— \327 10 10
41

320
~ 13%

P(5heads|H) x P(H)
P(5heads)

P(H|5heads)

L

—J
0.0)
X

9/10

1/10



1.4 Mutually exclusive and Independent
events

When events can not happen at the same time, i.e. no
outcomes in common, they are called mutually exclu-
sive. If this is the case, then

P(ANB)=0

A B

OO

and the addition rule becomes

P(AUB) = P(A) + P(B)

Example

Two dice are rolled, event A is 'the sum of the out-
comes on both dice is 5’ and event B is 'the outcome on
each dice is the same’

When one event has no effect on another event, the
two events are said to be independent, i.e.

P(A|B) = P(A)

and the multiplication rule becomes

P(AN B) = P(A) x P(B)

Example

A red dice and a blue dice are rolled, if event A is 'the
outcome on the red dice is 3’ and event B ’is the outcome
on the blue dice is 3’ then events A and B are said to be
independent.



1.5 Two famous problems

e Birthday Problem - What is the probability that
at least 2 people share the same birthday

e Monty Hall Game Show - Would you swap ?

1.6 Random Variables

1.6.1 Notation

Random Variables X,Y, Z
Observed Variables z, y, 2

Example
1.6.2 Definition

: let X =th ber faci hen a fair dice is rolled
Outcomes of experiments are not always numbers, e.g. . & RO RS RNRSN A LN

two heads appearing; picking an ace from a deck of cards.
We need some way of assigning real numbers to each ran-
dom event. Random variables assign numbers to events. P { 1  if heads

Thus a random variable (RV) X is a function which 0 if tails
maps from the sample space {2 to the number line.

or let X represent the outcome of a coin toss, where




1.6.3 Types of Random variable

1. Discrete - Countable outcomes, e.g. roll of a dice,
rain or no rain

2. Continuous - Infinite number of outcomes, e.g. exact
amount of rain in mm

1.7 Probability Distributions

Depending on whether you are dealing with a discrete
or continuous random variable will determine how you
define your probability distribution.

1.7.1 Discrete distributions

When dealing with a discrete random variable we de-
fine the probability distribution using a probaility mass
fucntion or simply a probability function.



Example . The distribution can be tabulated as:
The RV X is defined as’ the sum of scores shown by

tx;vc;x fair six sided dice’. Find the probability distribution - 213141516178
(0) 1 2 3 4 ] 6
PX=2) 5z |35 |36 | 25 | a5 | ar
A sample space diagram for the experiment is: ( ) 36 36 136 J6 136 6
Die 1
or can be represented on a graph as
Throwing 2 die
Die 2 .
2
1
1]
1 2 3 4 5 6 T 8
Total




1.7.2 Continuous Distributions

As continuous random variables can take any value, i.e an
infinite number of values, we must define our probability
distribution differently.

For a continuous RV the probability of getting a spe-
cific value is zero, i.e

P(X =2)=0

and so just as we go from bar charts to histograms when
representing discrete and continuous data, we must use a
probability density function (PDF) when describing the
probability distribution of a continuous RV.

Probability 2

Density /f(x)
Function e /

P(a<X<b)=/bf(a:)d:c

Properties of a PDF"

e f(x) > 0 since probabilities are always positive

° f;oo f(z)dx =1

e Pla< X <b)= [ f(z)d



Example

The random variable X has the probability density
function:

k l<x<?2
flx)=<¢ k(z—-1) 2<zx<4
0 otherwise

a) Find k and Sketch the probability distribution
b) Find P(X < 1.5)

a)

/+oof(a:)da: = |
> 2 4
1 = /;kdx+/2 k(x — 1)dx
9 4
1 = [kz]] + [%—km]
1l = 2k—k+[(8k‘—4k)2— (2k — 2k)]
1 = 5k

5

f(x)
3
5
2
5
1
5
2 3 5 x
b)
1.51
P(X < 1.5) / “dz
.



1.8 Cumulative Distribution Function

The CDF is an alternative function for summarising a
probability distribution. It provides a formula for P(X <
), i.e.

F(z) = P(X < 1)

1.8.1 Discrete Random variables

Example

Consider the probability distribution

T 1(2|3[(4|5]| 6
PX=2)|5|3]5|% |5 =
F(X) = P(X < z)
Find:
a) F'(2) and
b) F(4.5)




1.8.2 Continuous Random Variable
For continuous random variables

F(X) = P(X < z) = / T Flojie
or q h

f(z) = < F(2)

Example

A PDF is defined as

3(4 —z?) g <1
_J 11 =& =
f(z) { 0 otherwise

Find the CDF




Consider:

From —oo to 0O:

From 1 to oo:

From 0 to 1 :

1.e.

3"1‘
4z — =

3 Jo
gy |
op s T

3-

<0




Example

A CDF is defined as:

—

0 A |
F(z)=4 5 [2?+2c-3] 1<z<3
T >3

a) Find P(1.5 < < 2.5)
b) Find f(x)

a) b)

P(1.5 <z <2.5) 2

F(2.5) — F(1.5) f(z) = —F(z)

= i(252+2(25)—3)—i(152+2(15)—3) "
52 . (0 .

03 1@ =1

(z+1) 1<z<3
otherwise

O o=



1.9 Expectation and Variance

The expectation or expected value of a random variable
X is the mean p (measure of center), i.e.

E(X)=p

The variance of a random variables X is a measure of
dispersion and is labeled o2, i.e.

Var(X) = o?

1.9.1 Discrete Random variables

For a discrete random variable

E(X)=) zP(X =1)

Example

Consider the probability distribution

T 11234
PX=x)3]7]5]3

then

(1% 5)+(
15
3

1
2 X —
4

)+ (3 x

1

8

) + (

1
4 x —
8

)



Aside
What is Variance?

.;2
x.‘.,
M For a discrete random variable
-ve +ve Var(X) = E(XZ) = [E(X)]2
Now, for previous example
. 2 (= ) ’
V —
ariance - 1 1 1
2 2 2 2 2 2
z — al = e
=Zn 2 E(X?) = Ixo+2x3+3 x18+4%x 2
E(X) = 2
7
)2 C Var(X) = —
Standard deviation = \/ 2z —p ) ar(X) 64
n = 1.10937...

_ \/ >z _ u? Standard Deviation = 1.05(3s.f)



1.9.2 Continuous Random Variables

For a continuous random variable

E(X) = / af(@)da
and

Var(X)

B(X?) - [B(X)
/u 2’ f(z)dz — /” rflz)dz




Example

if

f(:::)={3%(4$_$2)

0<x<14
otherwise

Find E(X) and Var(X)

E(X)

Var(X)

E(X?*) - [E(X))?

4
/x2.3(4x—a:2)dx—22
0 32
4t 251
5

i 5)
44—4—] — 4

S N o
w|°° o | &P



1.10 Expectation Algebra

Suppose X and Y are random variables and a,b and c
are constants. Then:

e F(X+a)=FEX)+a

e F(aX)=aE(X)

e E(X+Y)=EX)+ E(Y)

o Var(X + a) = Var(X)

o Var(aX) = a*Var(X)

e Var(b) =0

If X and Y are independent, then
e E(XY)=EX)E(Y)

e Var(X +Y)=Var(X)+ Var(Y)



1.11 Moments
The first moment is E(X) = u

The n'* moment is E(X") = [ . x"f(z)dz

We are often interested in the moments about the
mean, i.e. central moments.

The 2™ central moment about the mean is called the
variance E[(X — p)?] = o2

The 3™ central moment is E[(X — u)?]

So we can compare with other distributions, we scale
with o® and define Skewness.

E[(X — p)’)

o3

Skewness =



This is a measure of asymmetry of a distribution. A
distribution which is symmetric has skew of 0. Negative
values of the skewness indicate data that are skewed to
the left, where positive values of skewness indicate data
skewedAto the right.

Negative Skew Positive Skew

The 4! normalised central moment is called Kurtosis
and is defined as

E[(X — p)"]
o4
A normal random variable has Kurtosis of 3 irrespec-
tive of its mean and standard deviation. Often when
comparing a distribution to the normal distribution, the

measure of excess Kurtosis is used, i.e. Kurtosis of
distribution —3.

Kurtosis =



Intiution to help understand Kurtosis

Consider the following data and the effect on the Kur-
tosis of a continuous distribution.

< hxo;

The contribution to the Kurtosis from all data points
within 1 standard deviation from the mean is low since

)\
e.g consider .
T1 =W+ 50
then s )
(m—p)' _(3) o' _(1\"_1
o4 ol 2 16

T > == 0%



The contribution to the Kurtosis from data points
greater than 1 standard deviation from the mean will
be greater the further they are from the mean.

(zi — p)*

>1
v

e.g consider
T1 = pu+ 30

then

This shows that a data point 3 standard deviations
from the mean would have a much greater effect on the
Kurtosis than data close to the mean value. Therefore,
if the distribution has more data in the tails, i.e. fat tails
then it will have a larger Kurtosis.

Thus Kurtosis is often seen as a measure of how ’fat’
the tails of a distribution are.



If a random variable has Kurtosis greater than 3 is
is called Leptokurtic, if is has Kurtosis less than 3 it is
called platykurtic

Leptokurtic is associated with PDF’s that are simul-
taneously peaked and have fat tails.

(+) Leptokurtic General
Forms of
(0) Mesokurtic Kurtosis

{(Normal)

(-) Platykurtic



1.12 Covariance

The covariance is useful in studying the statistical de-
pendence between two random variables. If X and Y
are random variables, then theor covariance is defined

as:

Cov(X,Y) =

I
&y
=
I
Js3
>
=<
l
js)
=

Intuition

Imagine we have a single sample of X and Y, so that:



Now

X—-EX)=1
and

Y-EY)=-1
1.e.

Cov(X,Y) = -1

So in this sample when X was above its expected value
and Y was below its expected value we get a negative
number.

Now if we do this for every X and Y and average
this product, we should find the Covariance is negative.

What about if:



Y=7EY)=4
Now
X—-EX)=4
and
Y-EY)=3
1.e.
Cov(X,Y) =12

1.e positive

We can now define an important dimensionless quan-
tity (used in finance) called the correlation coefficient
and denoted pxy(X,Y) where

pPXYy = ; —1 < pxg <1

If pxy = —1 = perfect negative correlation

If pxy =1 = perfect positive correlation

If pxy =0 = uncorrelated



1.13 Important Distributions
1.13.1 Binomial Distribution

The Binomial distribution is a discrete distribution and
can be used if the following are true.

e A fixed number of trials, n
e Trials are independent

e Probability of success is a constant p

We say X ~ B(n,p) and

where




Example

If X ~ B(10,0.23), find

a) P(X = 3)
b) P(X < 4)
a)
P(X =8 = (130> (0.23)%(1.—023)"
= 0.2343
b)
P(X <4) = P(X <3

P(X=0+P(X=1)+P(X=2)+P(X=3)
(100) (0.23)°(0.77)'° + (11()) (0.23)1(0.77)°

v (3 )oxpome+ () ompory
= 0.821(3 d.p)



Example

Paul rolls a standard fair cubical die 8 times. What is
the probability that he gets 2 sixes.

Let X be the random variable equal to the number of
6’s obtained, i.e X ~ B(8, )

P(X =2) = (z) (é)Q (é)G — 0.2604(4 d.p)

It can be shown that for a binomial distribution where
X ~ B(n,p)
E(X)=mnp

and
Var(X) = np(1 —p)



1.13.2 Poisson Distribution

The Poisson distribution is a discrete distribution where
the random variable X represents the number of events
that occur ’at random’ in any interval. If X is to have a
Poisson distribution then events must occur

e Singly, i.e. no chance of two events occurring at the
same time

e Independently of each other

e Probability of an event occurring at all points in time
is the same

We say X ~ Po()).

The Poisson distribution has probability function:
e AN

PX=r)= =

r =0, 1,2...
It can be shown that:
EX)=\
Var(X) = A



Example

Between 6pm and 7pm, directory enquiries receives
calls at the rate of 2 per minute. Find the probability
that:

(i) 4 calls arrive in a randomly chosen minute

(ii) 6 calls arrive in a randomly chosen two minute pe-
riod



(i) Let X be the number of call in 1 minute, so

A=2 de E(X)=2

and 2
e— T
X ~ Po(2) = -
g4
P(X'=4)= 2 = 0.090(3 d.p)

(ii) Let Y be the number of calls in 2 minutes, so

X =4, ie. E(Y)=4

and
e 445

6!

= 0.104(3 d.p)



1.13.3 Normal Distribution

The Normal distribution is a continuous distribution.
This is the most important distribution. If X is a ran-
dom variable that follows the normal distribution we say:

X ~ N(p,0%)
where
E(X)=p
Var(X) = o?
and the PDF is described as
1 @-w?
PDF = f(:L’) = € 202
o\ 2w
1.e. . I ,
P(X <x) :/ e 2" ds
—56 OV.2TT
normal curve.
y

-~




The Normal distribution is symmetric and area under
the graph equals 1, i.e.

+00 1 2
(z—p)
/ e 222 drxr=1

o0 O\ 2T

To find the probabilities we must integrate under f(z),
this is not easy to do and requires numerical methods.
In order to avoid this numerical calculation we define
a standard normal distribution, for which values have
already been documented.

The Standard Normal distribution is just a transfor-
mation of the Normal distribution.



1.13.4 Standard Normal distribution

We define a standard normal random variable by Z,
where Z ~ N(0,1), i.e.

E(Z)=0
Var(Z) =1
thus the PDF is

and

®(z) = / \/12_7Te;2£ds
- To transform a Normal distribution into a Standard
N[O: 1] Normal distribution, we use:




Example

Given X ~ N(12,16) find:

a) P(X < 14)
b) P(X > 11)
¢) P(13 < X < 15)
a)
PDF
| I
12 14
X — 14 — 12
z=""F_ =0.5

o 4
Therefore we want

P(Z <£0.5) = (0.5)
= 0.6915

(from tables)

b)
PDF
. X
11 12
11 —-12
Z = = —0.2
1 0.25
Therefore we want
P(Z > —0.25)
but this is not in the tables. From symmetry this is the
same as
P(Z < 0.25)
ie.
®(0.25)
thus

P(Z > —0.25) = ®(0.25)
= 0.5987



y

N

12 13 15
13 — 12

7=

> 4
15 — 12

Zp = —

Therefore
P(0.25 < Z < 0.75)

=0.25
= 0.75
®(0.75) — (0.25)

0.7734 — 0.5987
0.1747



1.13.5 Common regions

The percentages of the Normal Distribution lying within
the given number of standard deviations either side of

the mean are approximately:



One Standard Deviation:

Three Standard Deviations:

Two Standard Deviations:




1.14 Central Limit Theorem
The Central Limit Theorem states:

Suppose X1, Xo, ...... , X, are n independent random
variables, each having the same distribution. Then as n
increases, the distributions of

and of

come increasingly to resemble normal distributions.
Why is this important ?
The importance lies in the fact:

(i) The common distribution of X is not stated - it can
be any distribution

(ii) The resemblance to a normal distribution holds for
remarkably small n

(iii) Total and means are quantities of interest

If X is a random variable with mean y and standard
devaition ¢ fom an unknown distribution, the central
limit theorem states that the distribution of the sample
means is Normal.



But what are it’s mean and variance ?

Let us consider the sample mean as another random
variable, which we will denote X. We know that

g Xt X+ Xy 1o 1o 1y
n n n n
We want E(X) and Var(X)
- 1 1
E(X) = E (—X1 o Ry L —Xn>
n n
1 1 1
= —E(X1)+ —E(Xs) +...... + EE(X")
1 1 1
= —U+—lU+.... + —p
noon n
—
= p

i.e. the expectation of the sample mean is the popu-
lation mean !



Var(
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|
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o
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o
|
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N—_
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Q
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Thus CLT tells us that where n is a sufficiently large



number of samples.

Standardising, we get the equivalent result that

X —p

a

NLD

This analysis could be repeated for the sum S, = X+
Xo+....... + X,, and we would find that

Sp — np
- ~ N(0,1)

~ N(0,1)




Example

Consider a 6 sided fair dice. We know that E(X) = 3.5

and Var(X) = 22.

Let us now consider an experiment. The experiment
consists of rolling the dice n times and calculating the
average for the experiment. We will run 500 such exper-
iments and record the results in a Histogram.

n=1

In each experiment the dice is rolled once only, this
experiment is then repeated 500 times. The graph below
shows the resulting frequency chart.



Frequency
.
2

s &8 8 § &8 3 8 38

.
=

002040608 1 12141618 2 22242628 3 32343638 4 A24A46A8 5 525A5658 6
Average for each experiment

This clearly resembles a uniform distribution (as ex-
pected).



Let us now increase the number of rolls, but continue
to carry out 500 experiments each time and see what
happens to the distribution of X

n=>y

Frequency
2

8

20

10

; 1 | |

0 02040608 1 12141618 2 22242628 3 32343638 4 A2A4AA4648 5 52545658 6
Average for cach experiment




n=10

g 2

Frequency
= 2 & =

-

n.

‘ $

10 I

N .|.II|||| |||| fiaks

002040608 1 12141618 2 22242628 3 32343638 A A244A6A8 5 52545658 6
Average for each experiment



1

30

Frequency

10

0 02040608 1 12141618 2 22242628 3 32343638 A A2AAA6A8 5 52545658 6
Average for cach experiment



We can see that even for small sample sizes (number
of dice rolls), our resulting distribution begins to look
more like a Normal distribution. we can also note that
as n increases our distribution begins to narrow, i.e. the
variance becomes smaller %2, but the mean remains the
same /.



2 Statistics

2.1 Sampling

So far we have been dealing with populations, however
sometimes the population is too large to be able to anal-
yse and we need to use a sample in order to estimate the
population parameters, i.e. mean and variance.

Consider a population of N data points and a sample
taken from this population of n data points.

Population (N)

Sanllple (n) are given by:

We know that the mean and variance of a population

population mean,

and

population variance,



But how can we use the sample to estimate our pop-
ulation parameters?

First we define an unbiased estimator. An unbiased
estimator is when the expected value of the estimator is
exactly equal to the corresponding population parame-
ter, l.e.

if Z is the sample mean then the unbiased estimator is

E(z) = p

where the sample mean is given by:

ZﬁL L

n

[ —

If S? is the sample variance, then the unbiased esti-
mator 1s

E(S% = o’
where the sample variance is given by:

52 - Zz;l (x’i o 5)2

n—1




2.1.1 Proof
From the CLT, we know:

E(X)=p
and 5
Var(X) = %
Also
Var(X) = B(X?) — [B(X)]
l.e. 5
o —
—=EX%) -y’
or

2 o?
E(Xz) = z + H2

For a single piece of data n = 1, so

E(X}?) =0+ p’

Now

E [Z(XZ- y X)Z]

E [Z X2 nX"?]
Y E(X}) - nE(X)

o2
no? + n,u2 —n (— + u2)
n

no’ + n,u2 —o? — np2
= (n—1)o?
E [3(Xi — X))

n—1



2.2 Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) is a sta-
tistical method used for fitting data to a model (Data
analysis).

We are asking the question:

”Given the set of data, what model parameters is most
likely to give this data?”

MLE is well defined for the standard distributions,
however in complex problems, the MLE may be unsuit-
able or even fail to exist.

Note:When using the MLE model we must first as-
sume a distribution, i.e. a parametric model, after which
we can try to determine the model parameters.



2.2.1 Motivating example

Consider data from a Binomial distribution with random
variable X and parameters n = 10 and p = py. The
parameter p is fixed and unknown to us. That is:

flz;po) = P(X =z) = (1:1;0) P2(1 — pp)i0-*

Now suppose we observe some data X = 3.

Our goal is to estimate the actual parameter value p,
based on the data.



Thought Experiments:

let us assume py = 0.5, so probability of generating
the data we saw is

f(3;0.5) = P(X=3)
— (130)(0.5)3(0.5)7
~ 0.117

Not very high !

How about py = 0.4, again

f(3;04) = P(X=3)
— (130)(0.4)3(0.6)7
~ (0.215



So in general let p9 = p and we want to maximise

f(3;p), i.e

f@3;p) =P(X =3) = (130) P’(1—p)’

Let us define a new function called the likelihood func-

tion £(p;3) such that £(p;3) = f(3;p). Now we want to
maximise this function.

Maximising this function is the same as maximising
the log of this function (we will explain why we do this



later!), so let
L(p; 3) = log £(p; 3)

therefore,

10
L(p;3) = 3logp + Tlog(1 — p) + log (3)

To maximise we need to find % =)

dL
e 0
3 7
R — 0
p 1l—p
31—p)—Tp = 0
_ 3
P =10

Thus the value of p, that maximises L(p;3) is p = 13—0.
This is called the Maximum Likelihood estimate of

Po-



2.2.2 In General

If we have n pieces of iid data zi, x9, x3, ....x, With prob-
ability density (or mass) function f(z1,z2,xs,....2n;0),
where 6 are the unknown parameter(s). Then the Max-
imum likelihood function is defined as

U(O; B0 By l) = FI0% Zos T3 ey 0)

and the log-likelihood function can be defined as

L(6; 1, o, T3, ....Ex) = log U(0; T1, Za, T3, ....T1)

Where the maximum likelihood estimate of the param-
eter(s) 0y can be obtained by maximising L(6; z1, zo, T3, ....Z;,)



2.2.3 Normal Distribution

Consider a random variable X such that X ~ N(u,o?).
Let =, x5, Z3,....x, be a random sample of iid observa-
tions. To find the maximum likelihood estimators of
and o? we need to maximise the log-likelihood function.

f(@1, 2, 23, o Ty 1, 0) = f(T1510,0). f(T25 1, 0) . f (T 1, 0)

Up,0; 21, o, T3, ... Ty)

cL(p, 0520, T, X3, ....Ty) = logl(u, 0521, 22,23, ....20)

= log f(z1; p, o) + log f(zo; p, 0) +

> logf(wi; p,0)
1=1

For the Normal distribution

1 _fz—p)?

flzip,0) = T~

f(xl;“s 0').f($2; My 0') """" f(xn;l‘l" 0)




SO

L(u,0; 1,2, T3, ....ZTy)

= 1 _(zi—w)?
log Z o 27re 202
i=1

1
~g log(27r) — nlog(o ~ 53 ;

To maximise we differentiate partially with respect to u
and o set the derivatives to zero and solve. If we were
to do this, we would get:

n
12
n 4

1=1

and



2.3 Regression and Correlation

2.3.1 Linear regression

We are often interested in looking at the relationship be-
tween two variables (bivariate data). If we can model
this relationship then we can use our model to make pre-
dictions.

A sensible first step would be to plot the data on a
scatter diagram, i.e. pairs of values (z;,y;)
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Now we can try to fit a straight line through the data.
We would like to fit the straight line so as to minimise
the sum of the squared distances of the points from the
line. The different between the data value and the fitted
line is called the residual or error and the technique of
often referred to as the method of least squares.



20

15 -

10 3

If the equation of the line is given by
y=br+a

then the error in v, i..e the residual of the i** data point
(x;,y;) would be

ri = Yi—Y
= y; — (bx; + a)

We want to minimise Y ;" 72, i.e.

S.R= %or? = %o [y; — (bz; + a)]?
n=1 n=1



We want to find the b and a that minimise > _°r?.

SR = ) [y — 2yi(bwi +a) + (bzi + a)?]
= Z yf — 2by;x; — 2ay; + bz:rf + 2bax; + az}

or

ny? — 2bnzy — 2any + b*nx? + 2banz + na’



To minimise, we want

(i) 252 =0
(i) %55 = 0
(i)
0(5.R) = —2nzy + 2bnz? 4 2anz = 0
b
(i)
8(352) = —2ny + 2bnx + 2an =0

These are linear simultaneous equations in b and a
and can be solved to get

_ Sxy
b= e
where
_ e o (@)’
Sez = Z(xz ) = Z(xz) n
and




8,y /9585 = 222 ; 10 _ o025

10152025 303540

8116661473934 1802

Zz,f=180 Ey¢=516 Ezf=51’00 Zy?'=37228 Zz¢y¢=9585

< e —2025
1050
180 516

P = ——i= 2.8 jj = ——i=s G4
T 3 22.5 ] 3 64.5

= —1.929

sa=64.5—(—1.929 x 22.5) = 107.9

y = —1.929z + 107.9




2.3.2 Correlation

A measure of how two variables are dependent is their
correlation. When viewing scatter graphs we can often
determine if their is any correlation by sight, e.g.

25
20 P

15 ]
> o/
10

5/

0

Sl
> 15

°\:\.\‘
1(5) \

25

20

L 2
*

15 ®

10

¢

It is often advantageous to try to quantify the corre-
lation between between two variables, this can be done
in a number of ways, two such methods are described.



2.3.3 Pearson Product-Moment Corre-
lation Coefficient

A measure often used within statistics to quantify this
is the Pearson product-moment correlation coeffi-
cient. This correlation coefficient is a measure of linear
dependence between two variables, giving a value be-
tween +1 and —1.

Sy

PMCC r =

Example
Consider the previous example, i.e.

z 5 10|15 20 |25|30 35|40 |
y 9890 |81 |66 |61 47 39|34

We calculated,



Spy = —2025 and S, = 1050

also,
2
. Yi
S =Y (i~ 1) = Y6 - =00
l.e €142
Syy = 37228 — 5 3946
therefore,

—2025
T =
v/1050 x 3946

This shows a strong negative correlation and if we were
to plot this using a scatter diagram, we can see this vi-
sually.

= —0.995
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2.3.4 Spearman’s Rank Correlation Co-
efficient

Another method of measuring the relationship between
two variables is to use the Spearman’s rank corre-

lation coeffieint. Instead of dealing with the values
of the variables as in the product moment correlation
coefficient, we assign a number (rank) to each variable.
We then calculate a correlation coefficient based on the
ranks. The calculated value is called the Spearmans

Rank Correlation Coefficient, r;, and is an approxima-
tion to the PMCC.

1 6> d?

n(n? —1)
where d is the difference in ranks and n is the number of
pairs.

Py=



Example

Consider two judges who score a dancing championship
and are tasked with ranking the competitors in order.

The following table shows the ranking that the judges 9
gave the competitors. 8
7.
Competitor A|B|C|D|E|F|G|H & &
JudgeX |(3|1|6|7|(5|4|8|2 :‘..5-
JudgeY [2(1|5|8|4|3|7|6 34 -
31 *
calculating d?, we get 2 .
A L 2
difference d [1|0(1(1|1(1|1]| 4 0 : ;
dif ference’? d*|1/0[1/1(1|1|1]|16 0 2 a
Judge X
.‘.de=22 and n =28
ry=1-— JLIN 0.738 . strong positive correlation

8(82 — 1)



2.4 Time Series

A time series is a sequence of data points, measured typi-
cally at successive times spaced at uniform time intervals.
Examples of time series are the daily closing value of the
Dow Jones index or the annual flow volume of the Nile
River at Aswan.

Time series analysis comprises methods for analyzing
time series data in order to extract meaningful statistics
and other characteristics of the data.

Two methods for modeling time series data are (i)
Moving average models (MA) and (ii) Autoregressive
models.



2.4.1 Moving Average

The moving average model is a common approach to
modeling univariate data. Moving averages smooth the

price data to form a trend following indicator. They do
not predict price direction, but rather define the current
direction with a lag.

Moving averages lag because they are based on past
prices. Despite this lag, moving averages help smooth
price action and filter out the noise. The two most pop-
ular types of moving averages are the Simple Moving
Average (SMA) and the Exponential Moving Average
(EMA).



Simple moving average

A simple moving average is formed by computing the
average over a specific number of periods.

Consider a 5-day simple moving average for closing
prices of a stock. This is the five day sum of closing
prices divided by five. As its name implies, a moving
average is an average that moves. Old data is dropped
as new data comes available. This causes the average
to move along the time scale. Below is an example of a
5-day moving average evolving over three days.

Closing Prices| 5daySMA
11
12
13
14
15 13
16 14
17 15




The first day of the moving average simply covers the
last five days. The second day of the moving average
drops the first data point (11) and adds the new data
point (16). The third day of the moving average contin-
ues by dropping the first data point (12) and adding the
new data point (17). In the example above, prices grad-
ually increase from 11 to 17 over a total of seven days.
Notice that the moving average also rises from 13 to 15
over a three day calculation period. Also notice that
each moving average value is just below the last price.
For example, the moving average for day one equals 13
and the last price is 15. Prices the prior four days were
lower and this causes the moving average to lag.



Exponential moving average

Exponential moving averages reduce the lag by apply-
ing more weight to recent prices. The weighting applied
to the most recent price depends on the number of pe-
riods choosen. There are three steps to calculating an
exponential moving average. First, the simple moving
average to be used as the previous-period’s EMA in the
first calculation. Second, calculate the weighting multi-
plier which depends on period length (below formula is
for 10-day EMA, n=10). Third, calculate the rolling
exponential moving average for the rest of observations.

Ez’+1 - 2/(n+1)(Pi+1_ Ez) e Ez



O 8 - M h &N -

e I T N
h h & U -O

Date
24 Mar-10
25 Mar-10
26 Mar-10
29 Mar-10
30 Mar-10
31-Mar-10
1-Apr-10
5 Apr-10
6-Apr-10
7-Apr-10
8-Apr-10
9 Apr-10
12-Apr-10
13-Apr-10
14-Apr-10
15-Apr-10

Smoothing
Constant

Price 10-daySMA 2§10+ 1)

227
219
2208
217
2218
213
223
243
2224
229
215
239
2338
2261
2336
24 05

22
221
223
226
23
2242
261

0.1818
0.1818
01818
0.1818
0.1818
0.1818

10-day EMA

222
22
2224
227
2233
2252
2280

16 15-Am-10
17 16-Ap-10
19 19-Apr-10
19 20-Apr-10
20 21-Apr-10
21 22.Apr-10
22 23 Apr-10
23 26 Apr-10
24 27-Apr-10
25 28 Apr-10
26 29 Apr-10
27 30-Apr-10
28 3 May-10
29 4-May-10
30 5May-10

240
2375
2383
2395
2363
2382
2387
2365
2319
2310
2333
22 68
2310
22 40
217

2261
277
29
2308
2321
2333
2353
2365
231
2369
2361
2351
2343
2328
2313

0.1818
0.1818
0.1818
0.18138
0.1818
0.1818
0.13138
0.1818
0.1818
0.18138
0.1818
0.18138
0.1818
0.1818
01818

2280
2297
2313
2328
2334
2343
2351
2354
2347
2340
2339
2326
2323
2308
2292




10-period exponential moving average applies an
18.18% weighting to the most recent price. 10-period
EMA can also be called an 18.18% EMA.

20-period EMA applies a 9.52% weighing to the most
recent price 2/(20+1) = .0952.

The weighting coefficient for the shorter 10-day EMA is
higher than coefficient for the longer-perod 20-day EMA.
The weighting drops by half every time the moving
average period doubles.
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