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1 A few preliminaries

This section is not meant to be complete in any sense. Rather, it serves as a reminder of some

of the notation we will use extensively.

1.1 Real numbers and the least upper bound property

We denote the set of real numbers by R, and often visualise this set as a line which we will

refer to as the real line.

A subset of R is called bounded above if there exists a number (an upper bound) which

is greater than or equal to all elements of the set. Likewise, we call the set bounded below if

there is a number (a lower bound) which is smaller than or equal to all elements of the set. If

the set is bounded both above and below, we simply call the set bounded. Written formally,

a set S ⊂ R is bounded if and only if there exists a number B such that |x| ≤ B for all x ∈ S.

R satisfies the so-called least upper bound property which states that:

If a subset S of R is bounded above, then it has an upper bound which is smaller than all

other bounds. That is, for every S ⊂ R which is bounded above, there exists a number b

such that

• x ≤ b for all x ∈ S, and

• if x ≤ B for all x ∈ S, then b ≤ B

This upper bound b is called the least upper bound of S.

The least upper bound (lub) of S is also called its supremum. If the lub of S belongs

to S, then it is necessarily the maximum element of S. It is not hard to see that every set

bounded below necessarily has a greatest lower bound (also called infimum).

1.2 The set of ordered real pairs: R2

The set of ordered real pairs is the Cartesian product of R with itself:

R2 = R× R = = {(x1, x2) | x1, x2 ∈ R}

In words, this is the set of all ordered pairs (x1, x2) such that x1 and x2 are real numbers.

The term “ordered” is to remind us that (3, 5) is not the same as (5, 3).

Similar to our visualisation of R as a line, we will visualise R2 as a plane, and on this plane

we will often draw two lines explicitly:

• {(x1, 0) | x1 ∈ R} called the horizontal axis

• {(0, x2) | x2 ∈ R} called the vertical axis

We can appeal to plane geometry to extend our notion of distance from the real line (a

visualisation of the set R) to the real plane (a visualisation of the set R2). Using the geometric
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notion of distance between two points x = (x1, x2) and z = (z1, z2), we define the distance

between two points in R2 as:

dist((x1, x2), (z1, z2)) =
(
(x1 − z1)2 + (x2 − z2)2

)1/2

1.3 The set of ordered n-tuples

If we can talk about pairs, why not also define n-tuples of real numbers? That is, ordered

strings of n reals:

Rn = {(x1, x2, . . . , xn) | xi ∈ R for all i = 1, . . . , n}

A convention is to treat the cartesian product Rm × Rn as Rm+n. This is quite intuitive since

the first set(Rm) is the set of ordered m-tuples, and the second set (Rn) is the set of ordered

n-tuples. An ordered pair of an m-tuple and an n-tuple can be seen as an m+ n-tuple:

((x1, . . . , xm), (x̃1, . . . , x̃n)) = (x1, . . . , xm, x̃1, . . . , x̃n)

= (x1, . . . , xm, xm+1, . . . , xm+n) where xm+i = x̃i for all i = 1, . . . n

1.4 Rn as a vector space

When we talk about bundles of n goods, we often index them as good 1, good 2, good 3, and

so on. For example, apple is good 1, banana is good 2, etc. Then we denote the amount of

goods in a bundle with a string of n numbers:

x = (x1, x2, . . . , xn)

which indicates that the bundle x contains x1 apples, x2 bananas, and so on. We can refer

to this n-tuple as an n-dimensional point which is an element of the n-dimensional real space

Rn. Now we would like to develop a bit more machinery to use these n-dimensional points

effectively in various applications.

In order to take advantage of visual intuition, we will first introduce concepts for two-

dimensional vectors, and then extend them to n dimensions.

Special case: the two-dimensional vector space R2

When we are dealing with two types of goods only, the bundles represented by pairs (x1, x2)

enjoy a convenient geometric representation: points on the coordinate plane that depicts R2

R2 = R× R = {(x1, x2) | x1, x2 ∈ R}

Another word for points in R2 is vector, and sometimes it is useful to visualise x = (x1, x2)

as an arrow which begins at the origin (0, 0) and ends at (x1, x2). While we can use the words

point and vector interchangeably, the word vector can be particularly useful in highlighting

the fact that we are talking about a tuple, not a single number.

For vectors x,y in R2, and numbers c in R we define the following operations
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• vector addition: (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

• scalar multiplication: c(x1, x2) = (cx1, cx2)

The symbol c stands for an arbitrary number in R and in order to emphasise that it is a

number, not a vector, we sometimes use the word scalar when we refer to numbers which we

multiply with vectors.

With these operations of vector addition and scalar multiplication, the set R2 gets a

structure, called vector space, which allows us not only to add but also subtract one vector

from another. After all, subtracting y from x can be achieved by first multiplying y with the

scalar −1 to obtain −y, and then add −y with x. The vector (0, 0) is the identity element of

vector addition, denoted 0, or simply 0 if we are lazy with notation.

More generally: vectors in Rn

In the same fashion as above, we can define the following algebraic operations for vectors.

Vector addition. Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),

x+ y = (x1 + y1, . . . , xn + yn)

Scalar multiplication. Given a vector x = (x1, . . . , xn) and a scalar c ∈ R,

cx = xc = (cx1, . . . , cxn)

It is straightforward to verify that these operations satisfy the following properties:

• x+ y = y + x (Commutative Law)

• x+ (y + z) = (x+ y) + z (Associative Law)

• x+ 0 = x, where 0 = (0, . . . , 0) is the zero vector

• c(x+ y) = cx+ cy (Distributive Law)

The inner product (dot product) of vectors

The vector space Rn admits a third operation, whose geometric interpretation is less obvious,

but is very convenient in capturing widely used operations in applications. Given two vectors

x and y, we define their inner product (also called the dot product) as

x · y = x1y2 + x2y2 + · · ·+ xnyn =
n∑
i=1

xiyi

Note the “dot” sign between x and y. This is another reminder that x and y refer to vectors

(not scalars). Secondly, the outcome of a dot product is not another vector in Rn, but instead

a scalar, i.e., a number in R.
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What is this good for? Well, if nothing, to express concisely the cost of a bundle. If

x = (x1, . . . , xn) stands for a bundle, and if p = (p1, . . . , pn) is the vector of prices for the n

goods we have in mind, then the cost of the bundle is nothing but the dot product of p with

x.

The following properties of the dot product are not hard to establish:

For all vectors x,y, z ∈ Rn and scalars c ∈ R

• x · y = y · x

• x · (y + z) = x · y + x · z

• (cx) · y = c(x · y) = x · (cy)

Distance in Rn. We simply adapt the two-dimensional geometric distance notion to the world

of n-dimensional points and define the distance between two points a and b in Rn as

‖a− b‖ =
√

(a1 − b1)2 + · · ·+ (ai − bi)2 + · · ·+ (an − bn)2.

Note that if a and b are not the same points, the distance between them will be positive.

The origin. The point 0 = (0, 0, . . . , 0) in Rn is the standard reference point of the n-

dimensional real space, and as such deserves the special name: the origin. For brevity, we

might occasionally denote this point as 0 with the understanding that it really corresponds to

0 = (0, . . . , 0) ∈ Rn.

The norm of a point (vector) in Rn. We refer to the distance between x and the origin as

the norm of x, and denote it by ‖x‖.

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n =

(
n∑
i=1

x2
i

)1/2

1.5 Open and closed sets in R

An interval is a particular kind of a subset of R. Namely it is the set of numbers which lie

between two specified points. An open interval (a, b) is the set of all real numbers greater

than a and less than b. A closed interval [a, b] is the set of all real numbers greater than or

equal to a and less than or equal to b.

(a, b) = {x | a < x < b} [a, b] = {x | a ≤ x ≤ b}.

The following are also called intervals:

[a, b) = {x | a ≤ x < b} (a, b] = {x | a < x ≤ b}.
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• For a given positive real number ε and a point a, we define the ε-neighbourhood of

a in R as the set of all points in R which are less than ε away from a. Another word

for this set is the open ball around a with radius ε. Formally we can express

this set as {x ∈ R | |x− a| < ε}. Equivalently this is nothing but the open interval

(a− ε, a+ ε).

• A set S ⊆ R is called open if for every point in S, there exists an open ball around

s all of which is also contained in S. That is, for every s ∈ S, there exists a positive

number ε such that (s− ε, s+ ε) ⊆ S.

• A set C ⊆ R is called closed if its complement in R is open. That is, C is closed if

R\C is open.

• A set C ⊂ R is called compact if it is closed and bounded.

An alternative way of defining a closed set is via the notion of boundary points. We say a

point s is a boundary point of S if every ball around the point s contains some element of

S as well as some element which does not belong to S. A set is called closed if it contains

all of its boundary points. It is a good exercise to verify that this definition of a closed set of

equivalent to the one given earlier.

1.6 Open and closed sets in Rn

We can generalise some of the above concepts to higher dimensions. In fact the definitions of

open and closed sets will be the same as they were for sets in R.

The r-neighbourhood of a point in Rn. The r-neighbourhood of a point a in R is the open

interval (a− r, a+ r). Described in the terminology of distance, this is the set of all numbers

whose distance from a is less than r. This latter distance formulation makes it really easy to

define the notion of the r-neighbourhood of a point a in Rn. That is, the set of all points in

Rn whose distance from a is less than r. Denoting it by N(a, r), we can also write it as

N(a, r) = {x ∈ Rn | ‖x− a‖ < r}

=
{
x ∈ Rn |

√
(x1 − a1)2 + · · ·+ (xn − an)2 < r

}
= {x ∈ Rn | (x1 − a1)2 + · · ·+ (xn − an)2 < r2}

Some people call this set the open r-ball centred at a. The qualifier open refers to the

fact that the surface of the ball (i.e., the set of points which are exactly r away from a) is not

included in the set. So, the r-ball centred at a ∈ R is the open interval (a − r, a + r). The

r-ball centred at a ∈ R2 is the open disk in the real plane with the centre a and radius r.
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A set S ⊆ Rn is called open if for every point in S, there exists an open ball around s all

of which is also contained in S. That is, for every s ∈ S, there exists a positive number ε

such that N(s, ε) ⊆ S. A set C ⊆ Rn is called closed if its complement in Rn, i.e., Rn\C
is open.

A set S ∈ Rn is bounded if it is contained in the “n-dimensional cube” [−B,B]n for some

B > 0. In other words, there exists a number B > 0 such that for every s = (s1, . . . , sn) ∈ S,

we have |si| ≤ B for all i = 1, . . . , n.

Finally, a set S ∈ Rn is compact if it is closed and bounded.

We say a point s is an interior point of S if there exists open ball around s all of which

is contained in S. The set of all interior points of S is called the interior of S, denoted by

int(S).

While it is not obvious how one can generalise the notion of an interval to sets in Rn, one

useful definition which allows some results for intervals in R to generalise to results in Rn is

the following:

A set K ⊆ Rn is convex if for all λ ∈ [0, 1],

a, b ∈ K =⇒ λa+ (1− λ)b ∈ K.

K is strictly convex if

λ ∈ (0, 1) and a 6= b ∈ K =⇒ λa+ (1− λ)b ∈ int(K).
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2 Functions

Functions summarise/capture/report relationships between two or more “variables”. Writing

down a function which specifies/describes a relationship between one variable and another does

not imply or assume causality; nor does it necessarily provide some structural explanation. A

function simply keeps track of the relationship.

When we speak of a function, we have two sets and a “rule/mapping” in mind. That is, a

function is not only the “rule” that describes what is mapped to what (i.e., the relationship),

but also the specification of the domain and the codomain.

f : A −→ B

a 7−→ b

This notation means: for every element a of A, there is an element in B which is called the

image of a under f . We denote by f(a) the image of a under f . If b = f(a), one can also say

“f sends a to b” or “f maps a to b”, etc.

The set A is called the domain of the function f . And the set B is called the codomain.

We can also talk about the image of a set S under f , which is nothing but the collection

of the images of all elements in S. I.e., if S is a subset of the domain, then its image under f

is

f(S) = {f(x) | x ∈ S}.

Given a function f , the image of its domain under f is called the range of f .

A function f : A→ B is called one-to-one (or 1-1, or injective) if for every a, a′ ∈ A

f(a) = f(a′) =⇒ a = a′.

In other words, a function is one-to-one if and only distinct elements of its domain have distcint

images.

A function f : A→ B is called onto (or surjective) if for each b ∈ B, there exists a ∈ A
such that f(a) = b.

The inverse image of b under f is the set of elements in A which are mapped to b:

f−1(b) = {a | f(a) = b}

If f : A→ B is 1-1 and onto, we can talk about its inverse function, denoted f−1, which

is the unique function from B to A pinned down by

f(f−1(b)) = b for all b ∈ B and, f−1(f(a)) = a for all a ∈ A.

We say f : A→ B and f−1 : B → A are the inverses of each other.

We say a set S has infinitely many elements (or more briefly S is an infinite set) if there

exists a one-to-one function f : N→ S, where N is the set of natural numbers.

Simple algebra of functions. If a set B admits basic algebraic operations such as addition

and multiplication (e.g., if B is the set of real numbers), we can extend such rules to those

functions from A to B. Given two functions f : A→ B and g : A→ B,
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• the sum of f and g is f+g, which is another function from A to B defined by (f+g)(a) =

f(a) + g(a) for all a ∈ A.

Likewise,

• the product of f and g is fg, which is another function from A to B defined by (fg)(a) =

f(a)g(a) for all a ∈ A

• the product of f with a scalar b in B is bf , which is another function from A to B defined

by (bf)(a) = bf(a) for all b ∈ B and all a ∈ A.

Composition of functions. Given functions f : A → B and g : B → C we define the

function g ◦ f : A→ C by setting

(g ◦ f)(a) = g(f(a)) for all a ∈ A

For example, given a one-to-one and onto function f : A→ B, composing f with its inverse

f−1 would yield an identity function:

f ◦ f−1 = idB : B → B where idB(b) = b for all b ∈ B

and

f−1 ◦ f = idA : A→ A where idA(a) = a for all a ∈ A

Note that unless A = B, the functions f ◦ f−1 and f−1 ◦ f are not the same.

2.1 Sequences

A sequence with values in set A is nothing but a function f : Z>0 → A, where Z>0 stands for

the set of positive integers. The custom is to use a different notation though. Instead of using

parentheses, we will use subindices. For example, instead of writing f(n), we can write an. (In

this particular occasion, the choice of the letter a is motivated by the fact that f takes values

in A. We could have used any other letter we wish.) Then the sequence will be denoted (an).

We will refer to an as the n-th term of the sequence (an).

We will be dealing mainly with sequences with values in real numbers (or later in the course

with values in Rk for k > 1).

If (nk) is an increasing sequence of positive integers, then ank
is called a subsequence of

(an). For example, if we set bn = a2n, then (bn) would be a subsequence of (an).

A real-valued sequence is non-increasing if an+1 ≤ an for all n. Likewise, we say a

sequence is non-decreasing if an+1 ≥ an for all n. Of course, a sequence can be neither. If a

sequence is non-increasing or non-decreasing, then it is called monotone.

A real-valued sequence (an) is said to be bounded if there exists B such that |an| ≤ B for

all n. Analogously, a sequence (an) with terms in Rn is called bounded if there exists B such

that ‖an‖ ≤ B for all n.

11



2.2 R→ R functions

Real-valued functions of one real variable is the class of functions for which we will

develop most of our analysis. When we talk about these functions, we actually have larger

class in mind, namely those real-valued functions whose domains are typically an interval or a

union of intervals in R. For example the function f : R≥0 → R given by f(x) = 1/x.

Given a function f : D → R, where D ⊆ R, we will say

• f is non-decreasing on D if for every a, b ∈ D, we have a > b implies f(a) ≥ f(b)

• f is increasing on D if for every a, b ∈ D, we have a > b implies f(a) > f(b)

• f is non-increasing on D if for every a, b ∈ D, we have a > b implies f(a) ≤ f(b)

• f is decreasing on D if for every a, b ∈ D, we have a > b implies f(a) < f(b)

• If f satisfies any of the above, it is called monotonic

We say f : D → R is bounded above on E ⊆ D if there exists a number b̄ such that

f(x) ≤ b̄ for all x ∈ E. Likewise, we say f is bounded below on E ⊆ D if there exists a

number b such that f(x) ≥ b for all x ∈ E. If f is both bounded above and below, it is simply

called bounded. For example, f : R → R given by f(x) = −x2 is bounded above on R, is

bounded below on every finite interval I ⊂ R, but is not bounded below on R or on R− or on

N.

We say f is single-peaked on D if there exists p such that f is increasing on the left hand

side of p, and decreasing on the right hand side of p. That is, for every a, b ∈ D, if a < b ≤ p

then f(a) ≤ f(b); and if p ≤ a < b, then f(a) ≥ f(b).

2.3 Graphs of R→ R functions

Plotting the graph of a function from R to R amounts to creating a visualisation (a picture)

of the following subset of R2

Graph(f) = {(x, f(x)) | x ∈ R}

on the real plane.

Obviously, if the domain of f is D ⊂ R, then its graph is the picture of

Graph(f) = {(x, f(x)) | x ∈ D}

on the real plane.

A function which has the form

f(x) = ax+ b where a 6= 0

is also called a linear function, because if we plot its graph, that is, if we draw the picture

of the following set in R2

Graph(f) = {(x, ax+ b) | x ∈ R}

12



in the real plane, we get a line that crosses the vertical axis at (0, b) and the horizontal axis at

(−b/a, 0).

A quadratic function has the form

g(x) = mx2 + nx+ p where m 6= 0

and the graph of a quadratic function is called a parabola.

Note on graphs of inverse functions: If a function f maps a to b, and if f has an inverse

function f−1, then by definition f−1 maps b to a. Bringing this fact into the graphs, we can

see that the graph of f−1 can be obtained by “reflecting” the graph of f about the 45o line

that goes through the origin. In other words, in the x-y coordinate plane, the graph of f is

the mirror image of the graph of of f−1 if we think of the x = y line as the mirror.

2.4 Polynomials and polynomial functions

An nth degree polynomial with real coefficients is the following object

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where a0, a1, . . . , an ∈ R such that an 6= 0. These numbers an, . . . , a0 are called the coefficients

of the polynomial. an is called the leading coefficient.

Each polynomial P = anx
n+an−1x

n−1 + · · ·+a1x+a0 corresponds to a R→ R polynomial

function P (x) : R→ R in an obvious manner which maps

x 7−→ P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

A number r ∈ R is called a real root of a polynomial P if P (r) = 0.

If r is a real root of a polynomial P of degree n, then P is divisible by (x− r), meaning it

can be written as

P (x) = (x− r)Q(x)

where Q is an (n− 1)st degree polynomial.

An nth degree polynomial P has at most n roots. If P has n distinct real roots r1, . . . , rn
and its leading coefficient is an, then

P (x) = an(x− r1)(x− r2) · · · (x− rn)

The expression on the right hand side above is called the factorisation of polynomial P .

Each x− ri is called a factor of P .

The nth binomial (x+ 1)n is

xn +

(
n

n− 1

)
xn−1 +

(
n

n− 2

)
xn−2 + · · ·+ x2

(
n

2

)
+ x

(
n

1

)
+ 1

where (
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1)(k − 2) · · · 1

13



We read the above expression as “n choose k”. Using the factorial notation

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1

we can rewrite “n choose k” as (
n

k

)
=

n!

(n− k)!k!

2.5 Rn → R functions

Our ability to visualise multi-variable functions is far more limited compared with the conve-

nience of a coordinate plane where we could depict R → R functions (or at least the nicely

behaving ones). Take for example a function f : R2 → R given by

f(x, y) = x2y3

The graph of this function is the following subset of R3:

Graph(f) = {(x, y, z) ∈ R3 | z = f(x, y)}

requiring three-dimensional imagery, which obviously is not as easy to achieve on a two-

dimensional paper or board. And once we allow more than two variables, then the graph

of the function will be an object which lives in an at least four dimensional world (three di-

mensions for three variables, and one dimension for the values of the function). As a result,

our geometric intuition is likely (or perhaps certainly) to be limited. However, some qualities

or properties satisfied by single-variable functions do hold for multi-variable functions, too,

and we can extend some of our intuition from the single-variable domain to the multi-variable

domain.

A function f : Rn → R is said to be homogeneous of degree k if

f(λx1, λx2, . . . , λxn) = λkf(x1, x2, . . . , xn)

for all λ > 0 and (x1, x2, . . . , xn) ∈ Rn.

The definition of a Rn → R function being bounded is similar to that of R→ R functions.

Given D ⊆ Rn, we say f : D → R is bounded above on E ⊆ D if there exists a number b̄

such that f(x) ≤ b̄ for all x ∈ E. Likewise, we say f is bounded below on E ⊆ D if there

exists a number b such that f(x) ≥ b for all x ∈ E. If f is both bounded above and below, it

is simply called bounded.
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3 Limits

It is probably easier to introduce the formal notion of a limit in the context of R-valued

sequences before discussing limits of R→ R functions.

3.1 Limit of a real-valued sequence

A real valued sequence (an) is said to converge to L if for each ε > 0,

there exists K such that n > K =⇒ |an − L| < ε.

That is, however small the given ε is, eventually all terms of the sequence are within the

ε-neighbourhood of L. Pay attention to the wording: after which term the sequence is trapped

in to the ε-neighbourhood of L can (and will typically) depend on ε. The smaller the ε, the

bigger K might need to be. But, the key is, for every ε > 0 , we can indeed find a K that

works.

For example, suppose a0 = 1 and an = 1/
√
n for n > 0. It is not hard to guess that

an → 0. Let’s prove this. Given any ε, can we find a corresponding K such that all terms of

the sequence after the K-th term are in the ε-neighbourhood of 0? Well, what does it mean

for an to be in the ε-neighbourhood of 0? It means

|an| < ε

that is,
1√
n
< ε

which is equivalent to

n >
1

ε2

If we choose K to be an integer larger than 1
ε2

, then any n larger than K is automatically

larger than 1
ε2

, and hence |an| < ε. Done!

We say L is the limit of sequence (an) as n approaches to infinity. There are two common

notations to express this, and you will see both, sometimes in the same text:

lim
n→∞

an = L and an → L both mean the same thing.

If a sequence does not converge to any L in R, we say that the sequence diverges. But it

is useful to distinguish the two types of divergence:

Diverging to ∞ or to −∞.

We say that (an) diverges to infinity if

for every bound M > 0 there exists an index K > 0, such that n > K =⇒ an > M.

Similarly, we say that (an) diverges to minus infinity if

for every bound M > 0 there exists an index K > 0, such that n > K =⇒ an < −M.
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Diverging without an eventual “trend”. If a sequence diverges, but not to ∞ nor −∞,

then we might have even less to say about its “long-run trend”. In order to illustrate this

sort of divergence, consider for instance the sequence defined by an = (−1)n which alternates

between 1 and −1.

3.2 Limit points of sets in R and sets in Rn

Suppose S is a subset of R. We say a number a is a limit point of set S if S has elements that

are arbitrarily close to a. To put it more precisely: given any ε > 0, S contains an element

s 6= a which is less than ε away from a. In fact, we can write it a bit more concisely: given

any ε > 0, there exists an s ∈ S such that 0 < |s − a| < ε. Another word for a limit point is

cluster point.1

The set of points which are less than ε away from a is called the ε-neighbourhood of a.

Let’s express the definition of a limit point in one more wording: a is a limit point of set S if

for every ε > 0, the ε-neighbourhood of a includes an element of S other than a. (Exercise:

an equivalent definition of a limit point states that a is a limit point of S if and only if every

neighbourhood of a includes infinitely many elements of S.)

Is it possible for a set S to have a limit point which does not belong to S?

Take, for example, the set of all positive real numbers, denoted R++ or R>0. Note that 1/n

is in this set for every possible positive integer n. Secondly, note that 0 is not in this set. And

finally, note that whatever ε > 0 we are given, we can look at 1/ε. Since natural numbers grow

without bound, there must exist a natural number n such that n > 1/ε. But then, ε > 1/n,

which means 1/n ∈ R>0 is less than ε away from 0. Hence 0 is a limit point of R>0 even though

it is not an element of R>0.

In fact, we can extend this idea to the real number line. Note that the set of rational

numbers (denoted Q) is “dense” on this line in the sense that however narrow is an interval,

we can always find rationals in there. That means, whatever point P given on the line, and

whatever ε-neighbourhood of P we consider, there will always be rational numbers in that

interval. So, P is a limit point of the set of rational numbers. Thus the limit points of the set

Q is R.

How about limit points of sets in Rn? Using the standard notion of a neighbourhood in

Rn, the definition of limit points in Rn is the same as above.

Theorem. A set S in Rn is closed if and only if it contains all its limit points.

The above theorem is sometimes stated as the definition of “closed” in Rn. If we were

to work with this definition, then the statement “a set in Rn is closed if and only if it is

the complement of an open set in Rn” could be derived as a theorem. Recall that we had

introduced this latter statement as the original definition.

1Note that we expressed the same thing three times in this paragraph. Which one sounds closest to daily

language? Which one sounds least likely to cause multiple understandings?
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3.3 Limit of a real-valued function of a single real variable

If we evaluate a function in smaller and smaller neighbourhoods of a point a, is it the case that

the values are trapped in smaller and smaller neighbourhoods of a particular number? The

existence of a limit of a function is concerned with this (intuitive but not not entirely precise)

question.

We say the limit of a single-real-variable, real-valued function f as x approaches to a is L

if for every given neighbourhood of L, there exists a corresponding neighbourhood of a such

that every x 6= a in the latter neighbourhood is mapped to the given neighbourhood of L.

In other words the limit of a function f as x approaches to a is L if the following

statement holds:

Given whatever ε > 0, there exists a δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε

When the above statement holds, we write lim
x→a

f(x) = L.

Note that the existence of this limit as x approaches to L makes no reference to the value

of the function at a. It only requires those points “close to a” to be mapped “close to L”. In

fact, it is possible that f is not even defined at the point a.

The concept of limit is critical in formalising a key notion, used extensively in economics:

that is, the notion of marginal. The language of the marginal requires us to look at what

happens “at the margin” of a point of interest. For example, how does a consumer’s taste

change when she is “very close” to the point of spending all of her income? Note, however,

that the adjectives “close” or “small” have no descriptive meaning on their own. They can

only make sense in relative terms.

What do we mean, then, when we say “at the margin” or “for small changes”?

3.4 Limit of a function f : Rn → Rm

Note that the definition can be phrased in the language of neighbourhoods, and thus can be

extended to Rn.

Suppose f is a function defined in a neighbourhood of a ∈ Rn which takes values in Rm.

We say the limit of f as x approaches to a exists and is equal to L if:

For every given ε > 0, there exists a δ > 0 such that

0 < ‖x− a‖ < δ =⇒ ‖f(x)−L‖ < ε

When the above statement holds, we write

lim
x→a

f(x) = L
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Continuity

Limits allow us to make formal what it means to say an Rn → Rm function is continuous. We

say such a function f is continuous at the point a if limx→a f(x) = f(a).

3.5 Limits of a few familiar functions

Let’s begin with everyone’s favourite family of functions from R to R, namely the constant

functions. If a function takes the same value at every element of its domain, then it is called

a constant function. When talking about functions from R to R, a function which takes

the value 5 at every point is also denoted by 5 even though this notation occasionally leads to

confusion, because 5 happens to be the symbol for a number as well. Having said that this

double usage of the same symbol both for a function and a number is more often convenient

than confusing.

For example, if f : R→ R is given by f(x) = 0, we will simply refer to this function as 0.

Zero everywhere!

Fine. Do these functions have limits as x approaches to this or that point. Well, you might

say obviously. The constant function 7 takes the value 7 at every x, and therefore it approaches

to 7 at every point. Hard to disagree with that. However, if you insist on verifying this from

the formal definition of a limit of a function, don’t let me stop you.

OK, here is a more complicated function, the so-called identity function from R to R
defined by f(x) = x. Once again, we might intuit that

lim
x→a

f(x) = lim
x→a

x = a = f(a)

and thus conclude that the identity function on R is continuous everywhere!

3.6 Basic algebra of limits (when the codomain is a subset of R)

If limx→a f(x) = L and limx→a f(x) = M , then

• limx→a(f + g)(x) = L+M .

• limx→a(fg)(x) = LM

If we also have M 6= 0, then

• limx→a(f/g)(x) = L/M

Combining these with just the knowledge of the limit of the identity function and constant

functions, we can argue:

• Polynomial functions are continuous at every point of R.

• Rational functions are continuous at every point where they are defined.

Another useful fact is the following: if (an) and (bn) are two sequences such that an ≥ bn
and an → a and bn → b, then a ≥ b.
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3.7 Limits of composition of functions

Limits are all about getting close! They talk about tendencies. Say g tends to L as its argument

tends to a. And say f tends to M as its argument tends to L.

Well, then what would you expect from f ◦ g as its argument tends to a:

f(g(

goes to a︷︸︸︷
2 )︸ ︷︷ ︸

goes to L

) −→M

In other words:

lim
x→a

g(x) = L and lim
x→L

f(x) = M =⇒ lim
x→a

f(g(x)) = M

Proof. Given ε > 0, we’d like to show that there exists a δ such that

0 < |x− a| < δ =⇒ |f(g(x))−M | < ε

First, we know that for the same ε given above, there exists a ∆ > 0 such that

0 < |x− L| < ∆ =⇒ |f(x)−M | < ε

So what we need from δ is to make sure that |g(x)−L| < ∆ for 0 < |x− a| < δ. But since

g(x)→ L as x→ a, it is indeed possible to find such δ. And therefore

0 < |x− a| < δ =⇒ |g(x)− L| < ∆ =⇒ |f(g(x))−M | < ε

2

3.8 A quick detour around ∞
We have already formalised what it means for the argument of a function to go to∞. However,

we haven’t given a clear definition of what it means to say a function is approaching to ∞ as

its argument approaches to this or that.2

What is ∞? Is it a number? Does it really exist? No, and yes, respectively.

∞ is not a real number. That is, it is not a member of R. Can we just add ∞ to this

set and talk about a new and larger set of numbers? If we really want, of course we can, but

we need to be careful, because ∞ does not behave like other numbers in algebraic operations.

And, therefore, we can’t really treat it as if it is a number as far as algebra goes in the way we

have been used to. And so much of our analysis relies on our ability to carry out algebra as

we know it so far.

Since we can’t treat ∞ as we treat real numbers, let’s just not force “numberhood” on

∞ and carry on. One way to think about ∞ is to observe that it summarises a particular

behaviour of a set of numbers. As such ∞ is a property which really describes something

about a set. What kind of set? What kind of behaviour? For example, if we say a sequence

2Likewise, we have formalised what it means for the terms of a sequence to go to ∞, but we haven’t given

a clear definition of what it means to say a sequence approaching to ∞
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goes (diverges) to ∞, what we mean is that given whatever bound, the terms of the sequence

will eventually exceed that bound. To make it more precise, given any B > 0, there exists k

such that an > B for all n ≥ k. All terms of the sequence will be larger than that bound B,

once we look at the kth term and beyond. What is k? That will depend on the sequence and

the bound B. For example we might need a bigger k as B gets bigger. The key is that, for

every given B, there exists such a k.

Adapting this formalism to limits of functions, we say f goes (diverges) to infinity as

x approaches to a, and write

lim
x→a

f(x) =∞

if

for every given B, there exists δ > 0 such that 0 < |x− a| < δ =⇒ f(x) > B.

In other words, if you look at points close enough to a, the values of the function at those

points will be guaranteed to exceed B. How about the point a? Well, remember again that

the limit of f as x goes to a is a concept unrelated to what happens at the point a. Note that

the requirement f(x) > B is for those points which satisfy 0 < |x− a| < δ.

While we are at it, let’s also make clear what it means to say “as the variable (or the

argument) of the function goes to infinity, such and such happens”. We say f(x) approaches

to L as x approaches to ∞, and write

lim
x→∞

f(x) = L

if

given any ε > 0, there exists B such that x > B =⇒ |f(x)− L| < ε.

Note. We never say 1
0

is equal to ∞. Instead we would say “1
0

is not defined”. Likewise,

we would not (at least formally) write things like 1
∞ = 0. We would say: as x goes to ∞, the

expression 1
x

goes to 0.

Limits of rational functions P (x)/Q(x) as x→∞

Say P (x) and Q(x) are polynomial functions of degree m and n, respectively, so they have the

form:

P (x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0 and Q(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

where am and bn are non-zero.

The limit of P (x)/Q(x) as x→∞ is

lim
x→∞

P (x)

Q(x)
=


am/bn if m = n

0 if m < n

∞ if m > n and am/bn > 0

−∞ if m > n and am/bn < 0

By the way, you may treat all of these results as exercises and try to verify them.
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3.9 Some key results about R-valued continuous functions

Extreme value theorem in R. A continuous real-valued function f defined on a closed

interval [a, b] is bounded. Moreover, it takes its minimum and maximum values over the

interval.

In order to appreciate the above statement, note that it does not hold for an open interval.

Consider (and draw the graphs for) the functions f : (0, 1) → R with f(x) = 1/x; and

g : (0, 1) → R with g(x) = x. Now evaluate how the conclusion of the theorem fails for each

function f and g.

More generally:

Extreme value theorem. Suppose K is a compact subset of Rn and f : K → R is continuous.

Then f is bounded, and it takes its minimum and maximum values over that compact domain.

I.e., there exist m,M ∈ K such that f(m) ≤ f(x) ≤ f(M) for all x ∈ K.

Intermediate Value Theorem. If f is continuous on [a, b], then f takes all the values

between f(a) and f(b).

For this theorem, the interval being closed is not of importance. One implication is that

if f is defined over an interval I, and its maximum and minimum values are given by M and

m, respectively, then f takes all the values between m and M . In other words, for every

µ ∈ [m,M ], there must be c ∈ I such that f(c) = µ.

A fixed point theorem. If f : [0, 1] → [0, 1] is a continuous function, then it has a fixed

point, i.e., there exists a point c ∈ [0, 1] such that f(c) = c.

More generally:

Brouwer’s fixed point theorem. Let S be a non-empty, compact, convex subset of Rn. If

f : S → S is continuous, then f has a fixed point, i.e., there must be a point c ∈ S such that

f(c) = c.

This theorem (which is a lot harder to prove) has important applications: used in show-

ing the existence of equilibrium prices in an exchange market; Nash equilibrium in a non-

cooperative game, etc.3

The algebra of continuity

Following the so-called algebra of limits, it is immediate to conclude that continuity is a

property preserved by addition, multiplication, division, powers, inverses, and composition.

To be more precise, if f and g are functions continuous at x, then so is f ± g, fg and f g. If,

moreover, g(x) 6= 0, then f/g too is continuous at x. If f has an inverse over a neighbourhood

of x, then the inverse of f is continuous at f−1(x). Finally, if f is continuous at x and g is

continuous at f(x), then g ◦ f is continuous at x.

3Sometimes a variant of Brouwer’s fixed point theorem called Kakutani’s fixed point theorem is used in

economics, which allows f to be set-valued, for example when f(x) describes the set of best responses to x.
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3.10 Left/right limits

Recall that for an R→ R, we say the limit of f as x approaches to a is L if

for any ε > 0, there exists δ > 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

We write

lim
x→a

f(x) = L,

and we also say the limit of f as x goes to a is L.

The above definition formalises the somewhat vague idea of f(x) getting closer and closer

to L as x gets closer and closer to a.

There is a less demanding property than having a limit, namely having a left limit, which

captures the requirement that f(x) should get closer and closer to L as x gets closer and closer

to a while x < a. This is less demanding, because it doesn’t put any discipline on those x

greater than a, i.e., it doesn’t require anything of f(x) for those x greater than a.

Formally, we say that the limit from left of f as x approaches to a is L if

for any ε > 0, there exists δ > 0 such that a− δ < x < a =⇒ |f(x)− L| < ε.

We write

lim
x→a−

f(x) = L

and we say, as x approaches to a from the left, f(x) approaches to L.

Now, you write a formal definition for what the concept of right limit must be in the space

below:

And, here’s your exercise. Prove the following statement

Theorem. limx→a f(x) exists if and only if both limx→a− f(x) and limx→a+ f(x) exist and are

equal to each other.

Example. Illustrate a case in which both left and right limits exist at point a, but the limit as

x approaches to a does not exist.

Now, the natural thing to do would be to extend these concepts to continuity. Fill in the

blanks in what follows:

Definition. We say that f is left continuous at a if
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Definition. We say that f is right continuous at a if

Theorem. Suppose that f is defined over an open interval I, and a ∈ I. f is continuous at a

if and only if f is both left and right continuous at a.

Example. Illustrate a function which is defined over a neighbourhood of a, but is neither left,

nor right continuous at a

Example. Illustrate a function which is defined over a neighbourhood of a, left continuous at

a, but not right continuous at a.
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4 Differentiation (for R→ R functions)

Assuming prior understanding of an intuitive notion of differentiation (of R → R functions)

as a measure of rate of change, its connection with the graph and various properties of the

function, we will quickly review the formal definition of derivatives in two different ways.

4.1 The derivative and linear approximations

The derivative of a function f with respect to its argument (variable) is a measure of the rate

of change of f(x) in relation to changes in x. For example, if the argument of the function

increases from a to a + h, then the change in the value of the function is f(a + h) − f(a).

Looking at the rate of change is to have a measure of this change f(a+ h)− f(a) with respect

(in proportion) to the change h in the argument of the function. That is, the derivative of the

function aims to formalise the following ratio

f(a+ h)− f(a)

h

In order to capture what the rate of change is exactly at the point a, we look at the above

ratio for smaller and smaller changes denoted by h. And if by looking at smaller and smaller

h, a unique number emerges, that is,

if

lim
h→0

f(a+ h)− f(a)

h
exists

then we say this limit is the derivative of f at a and denote it with f ′(a).

Note that we can also write this limit as

lim
x→a

f(x)− f(a)

x− a

Differentiability implies continuity. That is, if f is differentiable at a, then it must be

continuous at a. Why is that? Well just have look at the definition. The denominator of the

fraction goes to 0 as x → a . If the fraction has any chance of having a limit, the numerator

must also be going to 0. That is we must have f(x) → f(a) as x → a, which is nothing but

the definition of f being continuous at a.

Linear approximations. Here’s another definition (or important interpretation) of deriva-

tives. The function f having a derivative at the point a can also be interpreted as f having

a “reasonable linear approximation” around the point a. What does a linear approximation

mean, and what does it mean for it to be reasonable? We would like a linear function, that is,

something of the form Mx+N which is

“sufficiently close” to f(x) when x is “close” to a
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But what does that really mean? Surely, we should demand something better than “f(x) −
(Mx+N) goes to 0 as x− a goes to 0”, because even the constant function with M = 0 and

N = f(a) would satisfy that since f is continuous.

So we need the error term of our approximation

f(x)− (Mx+N)

not only to go to zero as x approaches a, but to do so at a speed an order of magnitude faster

than h = x− a does.

More specifically, we want

the error term

h
→ 0 as h→ 0

And this “speed of approximation” is possible if f is differentiable at a. The function f

has a linear approximation around a, that is

f(a+ h) ≈ f(a) + f ′(a)h

in the sense that

f(a+ h) = f(a) + f ′(a)h+ Error(h) where lim
h→0

Error(h)

h
= 0

An alternative definition of derivative. We say the derivative of f at the point a

exists and is equal to α if

f(a+ h)− f(a)− αh
h

→ 0 as h→ 0

The derivative of f : If we have the above limit for every x in a domain D of the function

f , we say f is differentiable over the domain D. We write f ′ for the function which associates

f ′(x) to x, and call this function f ′ the derivative of f .

Leibniz notation for derivatives: Derivative of f with respect to x can also be denoted

as
df

dx

Sometimes, we’d like to keep track of the name of the variable x separately from the

particular points at which we are analysing the function. This notation is useful:

df

dx

∣∣∣∣
x=a

to stand for the derivative of f with respect to x evaluated at the point a. In other words: f ′(a).

The advantage of the Leibniz notation is in reminding us what the differentiation variable is

when lots of symbols are floating around; a reminder especially handy when we are dealing

with functions of multiple variables.
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4.2 The derivatives of two simple functions

The simplest of all R → R functions is a constant function. Is this function differentiable

anywhere? Well, let’s remember the definition of what it means to be differentiable at a point

a, and rephrase that last question. Does the following limit exist:

lim
h→0

f(a+ h)− f(a)

h

The fact that f is a constant function implies, in particular, that f(a+h) = f(a) whatever

h is. Thus the above expression is nothing but

lim
h→0

0

h
= lim

h→0
0 = 0

So, yes, constant functions are differentiable everywhere, and their derivative is 0 every-

where. Makes sense: constant means to change. Hence zero rate of change!

Our next function of interest is the identity function on R, that is f : R→ R with f(x) = x.

Is it differentiable anywhere? Just apply the definition, and ask if the following exists:

lim
h→0

a+ h− a
h

= lim
h→0

h

h
= lim

h→0
1

which obviously exists and is equal to 1 at every a. Thus, f(x) = x is a differentiable function

with the derivative being 1 everywhere.

4.3 An important result

If the derivative of a function f is 0 at every point of an interval [a, b], then f must be constant

over that interval. (This result can be proven using the Mean Value Theorem which we will

mention later.)

4.4 Basic algebra of derivatives

We have already established that the derivative of a constant function is 0, and the derivative

of x is 1.

Given f and g differentiable at a, we have the following convenient results:

• (f + g)′(a) = f ′(a) + g′(a)

• if c is a constant, then (cf)′(a) = cf ′(a)

• (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

•
(
f

g

)′
=
f ′(a)g(a)− f(a)g′(a)

(g(a))2
as long as g(a) 6= 0.
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Now, use these rules with the knowledge of the derivatives of constants and the identity

function, and you can calculate the derivative of all polynomials (and rational functions)!

In particular

• (xn)′ = nxn−1 for integers n ≥ 0

•
(

1

x

)′
= (x−1)′ = − 1

x2

•
(

1

xn

)′
= (x−n)′ = −n 1

xn+1
for integer n < 0

Actually, it looks like we can summarise all of the above in one expression

(xn)′ = nxn−1 for all integers n

Note: We must acknowledge that we have been a bit lazy in our notation above. In

particular, when we were talking about the function f(x) = xn, we just wrote xn. In doing so,

we are keeping in mind that x stands for a variable. These kinds of shortcuts in notation are

convenient, but sometimes potentially confusing.

4.5 Higher order derivatives

If f is differentiable everywhere in a domain, then we can talk about its derivative f ′ as another

function on this domain. Perhaps f ′ is also differentiable. If so, the derivative of f ′ is called

the second derivative of f . In general, if exists, we can talk about the nth derivative of f and

denote it by f (n), so

f (n)(x) = (f (n−1)(x))′

i.e., the nth derivative of f is the derivative of the (n− 1)st derivative of f .

Note, for example, that the kth derivative of the function f(x) = xn with n > 0 exists:

If f(x) = xn, then f (k)(x) =

{
n(n− 1) · · · (n− k + 1)xn−k if 0 < k ≤ n

0 if 0 < n < k

4.6 The chain rule

Given functions f : A→ B and g : B → C, remember that the composed function g◦f : A→ C

is defined as

(g ◦ f)(x) = g(f(x))

The Chain Rule. If f is differentiable at x, and g is differentiable at f(x), then g ◦ f is

differentiable at x and

(g ◦ f)′(x) = g′(f(x))f ′(x).
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The idea behind the chain rule. How does this come about? Since this is a rule we will

be using over and over and over, it is worth developing a feel for why it indeed holds. It is

actually fairly intuitive.

For small δ, we have

f(x+ δ)− f(x) ≈ f ′(x)δ and therefore f(x+ δ) ≈ f(x) + f ′(x)δ (?)

Likewise, for small ∆ we have

g(y + ∆)− g(y) ≈ g′(y)∆ and therefore g(y + ∆) ≈ g(y) + g′(y)∆ (??)

First, g is continuous, so when δ is small, we can appeal to (?) to infer

g(f(x+ δ)) ≈ g(f(x) + f ′(x)δ)

If δ is small, we can treat f ′(x)δ as the small ∆ in (??), and set y = f(x), so (??) becomes

g(f(x) + f ′(x)δ) ≈ g(f(x)) + g′(f(x))f ′(x)δ

Combining the last two approximate equations:

g(f(x+ δ)) ≈ g(f(x)) + g′(f(x))f ′(x)δ

Rearranging this yields

g(f(x+ δ))− g(f(x)) ≈ g′(f(x))f ′(x)δ

and therefore we must have (g ◦ f)′(x) = g′(f(x))f ′(x). 3

4.7 L’hôpital’s rule and variations to compute limits

Given two functions f and g such that

• limx→a f(x) = L , where L ∈ R or L = ±∞

• limx→a g(x) = M , where M ∈ R or M = ±∞

what can we say about lim
x→a

f(x)

g(x)
if L = M = 0? Or if L = ±∞ and M = ±∞.

L’Hôpital’s rule. Suppose two functions f and g are differentiable on an open interval

I except possibly at a contained in I. Suppose also that g′(x) 6= 0 for all x ∈ I with x 6= a.

If lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a

f(x) = lim
x→a

g(x) =∞, and if lim
x→a

f ′(x)

g′(x)
exists, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
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In the same fashion, here’s a list of strategies to deal with limits which resemble one of

∞0 , ∞−∞ , 00 , 1∞

• For fg where f →∞ and g → 0, look at
f

1/g
or

g

1/f
instead.

• For f g where f →∞ and g → 0, look at ln(f g) = g ln f (can be viewed as g
1/ ln f

or ln f
1/g

).

• For f − g where f →∞ and g →∞, first try to simplify and see if you can arrive at an

expression of the form u(x)/v(x). Having exhausted options, have a look at exp(f−g) =

exp f/ exp g.

• For f g where f → 0 and g → 0, look at ln(f g) = g ln f (can be viewed as g
1/ ln f

or ln f
1/g

).

• For f g where f → 1 and g →∞, look at ln(f g) = g ln f (can be viewed as g
1/ ln f

or ln f
1/g

).

In other words, try to convert the limit question to one that looks like 0/0 or ∞/∞ to be

able to apply L’hôpital’s rule.

4.8 Differential of an R→ R function

The differential of a single-variable, real-valued function f is a real-valued function of two real

variables given by

df(x, h) = f ′(x)h

Note that the expression df is stands for an R2 → R function. It is common to use the

notation ∆x for the second variable, so the defining equation can be rewritten as

df(x,∆x) = f ′(x)∆x

The most common intuitive interpretation treats ∆x to be a “small” quantity, whatever

“small” means in the mind of the interpreter.

The above definition is useful in understanding the formal foundation of differentials, but

the usage often reduces the notation to

df(x) = f ′(x)dx

even though this last expression obscures the fact that df is a two-variable function. For

application purposes, since the second variable (denoted by h in the original definition) is

usually treated to be an “infinitesimal” value (again, whatever infinitesimal might mean), this

last notation (where we write dx instead of h) prevails. When we see this notation of dx, we

must remember that this two-letter symbol stands for a quantity which often captures a notion

of a “small change” in the argument of the function f .

Hence, the differential f ′(x)dx is meant to capture an approximation to the change in the

value of f(x) as a result of a change dx in the argument of f . That is:

f(x+ dx)− f(x) ≈ df(x) = f ′(x)dx

When we do algebraic operations with differentials, we think of dx as “infinitesimally small”

and evaluate the rate of “infinitesimally small” changes in the value of function with respect

to the “infinitesimally small” changes in x.
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Rules for differentials

Suppose a and b are constants, whereas f and g are R→ R functions. Then

• d(af + bg) = a df + b dg

• d(fg) = g df + f dg

• d
(
f

g

)
=
g df − f dg

g2
whenever g 6= 0.
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5 Some things we learn from the first derivative

5.1 The first order condition for optimisation

Recall the extreme value theorem which states that if f is a continuous function on [a, b], then

f attains its maximum and minimum values over this interval. That is, there exist points c

and d in [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

Often the point d is referred to as “the maximum” of f over the interval [a, b]. Clearly, d is

not the maximum value attained by f , but rather the point at which the function f : [a, b]→ R
attains its maximum value. Likewise, c is referred to as “the minimum” of f .

In addition to these two points, also of interest are the notions of the local maxima and local

minima. Formally, a point m is called a local minimum of f if there exists a neighbourhood

of m within which the function f takes its minimum value at m. Likewise, a point M is called

a local maximum of f if there exists a neighbourhood of M within which the function f

takes its maximum value at M .

Now suppose f is also differentiable on (a, b). If those points c and d are not the end points,

that is, if they are in (a, b), let’s look at the rate of change of f around c and d.

To begin with, look at c first. The fact that f is minimised at c when x varies over [a, b]

implies that

f(c+ h)− f(c) ≥ 0 for all h 6= 0

Dividing this expression by h 6= 0:

(?)
f(c+ h)− f(c)

h
≥ 0 for h > 0

(??)
f(c+ h)− f(c)

h
≤ 0 for h < 0

The fact that

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

exists means both (?) and (??) approach to that same limit as h approaches to 0. (In the case

of (?), we are talking about positive values of h approaching to 0. In the case of (??), we are

talking about negative values of h approaching to 0.)

But (?) always stays≥ 0 because the numerator is always nonnegative, and the denominator

is always positive. Therefore it cannot approach to something negative. Likewise, (??) always

stays≤ 0 because the numerator is always non-positive, and the denominator is always positive.

Thus it cannot approach to something positive. So, given that both approach to the same limit

(which is f ′(c)), that limit has to be 0.

We can tell a similar story for the point d ∈ (a, b) where the function is maximised as x

varies over [a, b]. The only difference with the above analysis would be that (?) would now be

≤ 0, whereas (??) would be ≥ 0. But the same logic will apply: if these expressions converge

to the same number, i.e., f ′(d), that number has to be 0.

In fact we can reach this conclusion at any point e ∈ (a, b) as long as e minimises or

maximises a differentiable function in a neighbourhood around e. In other words, e does not

31



have to be the point at which f is minimised or maximised for the above analysis to hold. It is

sufficient for e to be an interior local minimum or an interior local maximum. How so?

Well, suppose f takes its minimum value over (e− δ, e+ δ) at the point e. Then we can carry

out all of the above reasoning, because as we look at smaller and smaller h, the points e − h
and e + h are eventually in the δ-neighbourhood of e. Thus we have the conclusion which is

known as the first order condition for a function’s minima and maxima.

Theorem. Suppose a function is differentiable on some open interval containing the point

d. If d is a local minimum or a local maximum, then f ′(d) = 0.

Rolle’s Theorem. If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then

there exists a point c ∈ (a, b) such that f ′(c) = 0.

This can be seen as an application of the EVT and the FOC. If f is constant over [a, b],

then its derivative is zero for all x ∈ (a, b). If it is not constant, then there exist points in

(a, b), where f takes greater or smaller values than f(a) = f(b). Say it takes higher values.

Since f is continuous, it attains its maximum value over this domain at some point, and that

point cannot be a or b since f takes higher values somewhere between a and b. Say c 6= a, b is

where f takes its maximum value. The FOC implies that f ′(c) = 0 2

The mean value theorem

Suppose we drove from Cambridge to London. The journey was exactly 60 miles long and it

took us exactly 1 hour to complete this journey. The speedometer must have shown 60 mph at

some point of the journey. That’s what the mean value theorem (MVT) says. Denoting an hour

with the unit interval [0, 1], let x ∈ [0, 1] stand for time since departure, and let f(x) stand for

the distance travelled in the first x hours of the journey. So we have f(0) = 0 and f(1) = 60.

The speed of the car at time x is the rate of change of the distance travelled with respect to

time. That is f ′(x). The average speed over the whole journey is (f(1) − f(0))/1 = 60. To

paraphrase the conclusion of the MVT, the average (i.e., mean) speed of the car is attained at

some point during the journey: there exists c such that f ′(c) = 60.

Mean Value Theorem. Let f be continuous over [a, b], and differentiable over (a, b). There

exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

The theorem suggests a point where the slope of the tangent to the graph is the same as

the slope of the dotted line that connects (a, f(a)) and (b, f(b)). It’s not hard to convince

yourself that the points on the graph whose distance from that dotted line is maximised (or

even locally maximised) will be the points where the tangent will be parallel to the dotted line.

(The dashed line segment marked on the graph represents the distance from the point (x, f(x))

on the graph to the dotted line. his is clearly a point which does not maximise the distance

to the dotted line. The tangent at this point being steeper than the dotted line suggests that

moving northeast further along the curve will increase the distance to the dotted line.)

Exercise: If the derivative of a function f is 0 at every point of an interval [a, b], then f must

be constant over that interval.
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a b

(x, f(x))

(b, f(b))

(a, f(a))

5.2 The monotonicity of a function and the sign of its derivative

The derivative, remember, captures the rate of change of f with respect to its argument. So,

it should not be surprising that it carries some information regarding whether f is increasing

or decreasing. The following conclusions are fairly intuitive (though they should ideally be

verified):

• If f ′ > 0 on an interval (a, b), then f is increasing on (a, b).

• If f ′ < 0 on an interval (a, b), then f is decreasing on (a, b).

• If f is non-decreasing on an interval, then f ′ ≥ 0 on that interval.

• If f is non-increasing on an interval, then f ′ ≤ 0 on that interval.

• f is constant on (a, b) if and only if f ′ = 0 on (a, b).

5.3 Concavity and convexity of R→ R functions

An R → R function f is said to be concave over an interval I if for every a, b ∈ I such that

a 6= b, and any λ ∈ (0, 1):

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b).

Intuitively, concavity of f on interval I is equivalent to the following geometric property of

its graph: whichever two points you pick on the graph of f : I → R, and connect them with a

line segment, the graph of the function will lie above that line segment.

If the above inequality is strict for all a 6= b ∈ I and all λ ∈ (0, 1), we say f is strictly

concave over I.

A function f(x) is said to be convex over an interval I if for every a, b ∈ I such that a 6= b,

and any λ ∈ (0, 1):

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b).
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Intuitively, the graph of the function between x = a and x = b lies below the line segment

connecting (a, f(a)) and (b, f(b)).

If the above inequality is strict for all a 6= b ∈ I and all λ ∈ (0, 1), we say f is strictly

convex over I.

It is not hard to verify that f is concave if and only if−f is convex. (Treat this as an exercise

in algebra to practice your skills in writing the conditions for concavity and convexity.) Hence

we can formulate our statements for concave functions, and appropriate versions for convex

functions should follow by changing the signs in the right places, replacing maximums with

minimums, and so on.

Theorem. Let f be a continuously differentiable function defined on an interval I. f is

concave on I if and only if

f(b)− f(a) ≤ f ′(a)(b− a) for all a and b in I. (1)

Theorem. Let I be an open interval and f : I → R be twice differentiable such that f ′′ is

continuous. f is concave on I if and only if f ′′(x) ≤ 0 for all x ∈ I.

So, we learn something simply from the sign of the second derivative:

• If f ′′ < 0 on an interval, then f is strictly concave over that interval.

• If f ′′ > 0 on an interval, then f is strictly convex over that interval.

5.4 Classifying stationary points of R→ R functions

Stationary points of a single-variable real-valued differentiable function are those points at

which the derivative is equal to zero. Each such point corresponds to one of the following:

• A local minimum (At this point f ′′ ≥ 0.)

• A local maximum (At this point f ′′ ≤ 0.)

• An inflection point, if it is neither a local min or a local max.

Knowing the second derivative at a stationary point can help identify the nature of that

stationary point. Suppose f ′(a) = 0.

• If f ′′(a) > 0, then a is a local minimum.

• If f ′′(a) < 0, then a is a local maximum.

• If f ′′(a) = 0, then no conclusion can be drawn on the basis of f ′′ alone.

These conditions are also referred to as the second-order conditions (SOC) for a single-

variable function.

Theorem. Let f be a differentiable, concave function on the whole real line. Then f ′(m) = 0

if and only if m is a global maximum.

34



6 Series

Recall that a real-valued sequence is nothing but a function a : N → R, where N stands for

the set of natural numbers. Since the standard notation for sequences uses subindices instead

of parentheses, we will write an instead of a(n). Moreover, we will refer to an as the nth term

of the sequence (an) instead of calling it the value of the function a at the point n.

Associated with the notion of a real-valued sequence (an), we sometimes would like to talk

about the sum of its terms. But there are infinitely many terms, and it is not obvious how we

add up infinitely many numbers in a meaningful way. In fact an attempt to add up all terms

of a sequence will certainly fail at times. Take, for example, a constant sequence whose terms

are all equal to 1. How can we talk about adding up infinitely many ones and expect to get a

number as an answer?

Before we jump to any major conclusion, let’s think how we may try to conceptualise a

notion of adding up infinitely many terms of a sequence. Remember that infinity, to begin

with, was a property of a set. Namely, the property of not being finite, not ever ending when

we tried to count the elements of a set. But then we talked about the limit of a sequence (sn)

as n approaches to infinity. There is no such thing as s∞, but if the sequence (sn) is convergent,

then there is such a thing as limn→∞ sn.

Ah, maybe we should formalise what we mean by “adding up infinitely many numbers” as

a “limit of adding up finitely many numbers”. The terms of the sequence are neatly indexed

and it feels only natural to list them beginning from the lowest index to higher indices

a0, a1, a2, a3, . . .

so perhaps we have in mind a summation which looks like

a0 + a1 + a2 + a3 + · · ·

Of course, this last expression doesn’t make sense yet since it suggests adding up infinitely

many terms. On the other hand, it also suggests which “finite groups of numbers” we might

begin thinking about when we are trying to make sense of an “infinite sum”. Let’s do the

summation step-by-step, adding one term at a time, going from left to right. And let’s denote

the answer to step k by Sk so we have

S0 = a0

S1 = a0 + a1

S2 = a0 + a1 + a2

S3 = a0 + a1 + a2 + a3

...
...

...

Sn = a0 + a1 + a2 + a3 + · · ·+ an

As n gets bigger and bigger, we have more and more terms added up, and we will think of

the desired summation of all terms of (an) as the limit of these finite sums. We will refer to

∞∑
i=0

ai = a0 + a1 + a2 + a3 + · · ·
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as the series whose nth term is an, and whose nth partial sum is Sn.

Clearly (Sn) is a sequence on its own account, and we can talk about the limit of Sn as

n approaches to infinity. This is what the series is meant to capture. If Sn converges to L,

then we say the series
∑∞

i=0 ai converges to L. If Sn diverges to ∞, we say the series
∑∞

i=0 ai
diverges to ∞. And so on.

For example, if ai = 1 for all i = 1, 2, . . ., then
∑
ai diverges to ∞. If bi = (−1)i, then∑

bi diverges because its partial sums alternate between 1 and 0. Does a series ever converge?

Well, if zi = 0, then
∑
zi converges to 0. Sure, but is there any series which involves adding

up non-zero terms and still converges?

6.1 Geometric sequences and series

A geometric sequence is one where the consecutive terms have a fixed ratio, that is, when there

exists a constant c such that

for every n ∈ N, we have
an+1

an
= c

The sort of expressions which relate the n+ 1st term of a sequence to its nth (and perhaps

a few earlier terms) are sometimes referred to as a recursive expression. For example, we say

the expression an+1 = can describes the sequence (an) recursively. If we also know the value

of a0, then we can figure out every term of the sequence.4 In order to see why, simply observe

that

a1 = c× a0

a2 = c× a1 = c× c× a0 = c2 × a0

a3 = c× a2 = c× c2 × a0 = c3 × a0

...
...

an = cn × a0

One conclusion of the above argument also provides us with an alternative definition of

what it means for a sequence to be a geometric sequence. A geometric sequence is one whose

terms can be listed as:

a, ac, ac2, ac3, . . .

Convergence properties of a geometric sequence are fairly straightforward to explore, and

they depend on the value of c. Take for example the geometric sequence given by an = acn,

where a 6= 0.

• an → 0 if |c| < 1

• an → a if c = 1

4In general, one might have more complicated recursive expressions. For example, a very famous example

is the Fibonacci sequence which begins as F0 = 0 and F1 = 1, and then described by the recursive expression

Fn+2 = Fn+1 + Fn.
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• an diverges if c = −1. More specifically, it fluctuates between a and −a.

• an diverges to ∞ if c > 1

• an diverges if c < −1, with its magnitude growing without bound, but its sign fluctuating

between positive and negative.

A geometric series is a series associated with a geometric sequence, and hence looks like

∞∑
i=0

aci

Here are two quick observations regarding the partial sums of this geometric series:

Sn+1 = Sn + acn+1 and Sn+1 = cSn + a

which imply

Sn + acn+1 = cSn + a

When c 6= 1, this last equation allows us to solve for Sn:

Sn = a
1− cn+1

1− c

That is

If c 6= 1, then
n∑
i=0

aci = a+ ac+ ac2 + · · ·+ acn = a
1− cn+1

1− c
.

But we know that if |c| < 1, then cn → 0 as n→∞. Thus we have the following result:

If |c| < 1, then the geometric series
∞∑
i=0

aci converges to
a

1− c
.

6.2 Trigonometric functions and basic properties

We can talk about sequences of functions as well. If fn is a function on R, then

we say fn → f if for every x, we have fn(x)→ f(x).

For different values of x, the convergence of fn(x) to f(x) might have different “speeds”. If they

converge at a speed not so different from each other, then we say the convergence is uniform.

(More precisely speaking, given ε if we can find a δ that works independent of x in some closed

and bounded domain D, then we say convergence is uniform over the domain D.)

If fn is continuous for each n, and if fn → f uniformly, then f is continuous. Here’s an

example of non-uniform convergence: gn(x) = xn over domain x ∈ [0, 1]. Note that for every
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x ∈ [0, 1) we necessarily have xn → 0. For x = 1, obviously xn → 1. Note that gn → g, where

g(x) = 0 for x ∈ [0, 1), and g(1) = 1. In particular g(x) is not continuous.

If fn is differentiable on D, and the series

lim
n→∞

n∑
k=1

fn(x)→ G(x) uniformly

then we can differentiate the series term-by-term:

G′(x) =
∞∑
k=1

f ′n(x)

Sine and cosine

We define the functions sinx and cos x as follows

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞∑
k=0

(−1)kx2k

(2k)!

These series converge uniformly. Using this fact show that

(i) (sinx)′ = cosx

(ii) (cosx)′ = − sinx

(iii) (sinx)2 + (cosx)2 = 1
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7 Integration

We first provide a quick review of integration which involves a mechanical description of inte-

gration (of R → R functions) as the “inverse operator” of differentiation, and the geometric

interpretation of definite integrals as areas associated with the graphs of R → R functions.

Then we will discuss the foundations of integration to develop a more coherent view.

7.1 A quick review

If the derivative of F is f , then we say an indefinite integral of f is F . Note that if F is an

indefinite integral of f , so is F + c for every constant c, because F ′ = (F + c)′ (because the

derivative of any constant function is 0).

If F is an indefinite integral of f , then the definite integral of f from a to b is denoted∫ b

a

f(x)dx and is equal to F (b)− F (a).

Note that in the last expression it does not matter if we replace F with G where G = F + c

where c is a constant.

We can think of indefinite integration as an operator which takes as its input an integrable

function f , and returns as its output a differentiable function F whose derivative is f

f
integrated−−−−−−→ F such that F ′(x) = f(x).

(Note, once more, that the above description of the operator is not entirely complete in the

sense that the output of the indefinite integration operator is not uniquely determined. If F is

a function whose derivative is f , then so is the function G(x) = F (x) + 5 or H(x) = F (x)− 3,

and so on.)

𝑎 𝑏 𝑥 

𝑓 𝑥  

Figure 1: The area of the shaded region is
∫ b
a
f(x)dx.

If f is nonnegative on [a, b], then
∫ b
a
f(x)dx will capture the area between the graph of f ,

the horizontal axis, and the vertical lines at x = a and x = b. More generally, if f is at times

positive, and at times negative over the interval [a, b], then
∫ b
a
f(x)dx will capture the sum of
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areas between the graph of f and the horizontal axis, with a minus sign in front of the areas

that lie below the x-axis.

Basic rules

Being the inverse operation of differentiation, it is not surprising that integration will readily

inherit the basic algebraic properties of differentiation: namely, addition, subtraction and scalar

multiplication: given integrable functions f and g,∫
αf + βg = α

∫
f + β

∫
g

where α and β are constants (i.e., scalars).

Again, the anti-derivative nature of integration implies that

•
∫
xndx = 1

n+1
xn+1 for n 6= −1

•
∫
x−1dx = lnx

•
∫

expxdx = expx

7.2 Foundations of Riemann Integration

Let f be a continuous function on interval [a, b]. We’d like to partition this interval, beginning

with halving it, then halving both half intervals, and then halving all four quarter intervals,

and so on. So, if we denote by ` the length of the original interval, i.e., setting ` = b− a, first

we create two intervals of length `/2 each. Then four intervals of length `/4 each, and then

eight intervals of length `/8 each, etc. After n iterations, we have divided the interval into 2n

equal sub-intervals of length `/2n each.

Now, for this partition, let mi be the minimum value of f over ith subinterval, and Mi be

the maximum value of f over that same subinterval. So, we have mi ≤Mi for every subinterval

i = 1, . . . , 2n.

Next, define the nth lower sum sn and nth higher sum Sn as follows

sn =
1

2n

2n∑
i=1

mi Sn =
1

2n

2n∑
i=1

Mi

Clearly sn ≤ Sn. (Geometrically speaking, if f is nonnegative over [a, b], then sn is meant

to approximate, from the inside, the area between the graph of f and the x-axis, whereas Sn
is meant to approximate, from the outside.)

One more critical observation.5 If we make the partition finer, that is, if we divide the

subintervals into half one more time, the lower sum gets higher, and the upper sum gets lower.

That is

5This is something you should verify. To get an idea, simply compare, for an arbitrary function g, the

following two quantities: minx∈[0,2] g(x) versus 1
2 minx∈[0,1] g(x) + 1

2 minx∈[1,2] g(x).
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sn ≤ sn+1 ≤ Sn+1 ≤ Sn.

Note that sn is a non-decreasing sequence which is bounded above. Hence it is convergent.

Say it converges to s. Likewise, Sn is a non-increasing sequence bounded below, and hence is

convergent as well, say, with limit S. The above observations tell us that s ≤ S.

If s = S, then we say that the integral of f from a to b is this number s, and we write∫ b

a

f(t)dt = s

Remark. These numbers s and S are not equal for all functions. Thus, there are non-

Riemann-integrable functions. For example think about the limits of lower and higher sums

for the function

f(x) =

{
1 if x is rational

0 otherwise

over the interval [0, 1]. What do you get for s? What do you get for S?

Remark. We have discussed one particular way subdividing the interval [a, b], and then

computing the associated lower and upper sums. As the subintervals get smaller and smaller,

if the lower sums and upper sums converge to the same limit, we defined that limit as the

integral. But in fact, we could have carried out this exercise with partitions of arbitrary

subdivisions as long as the length of the longest subinterval at each iteration goes to zero as

we keep subdividing.

Notational convention. For practical purposes, it will be useful to define what we mean by

an integral from b to a when f is a function on [a, b]. And we will define it as∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

Remark. The interpretation of integral as the area between the graph of the function and

the horizontal axis makes sense if the function is nonnegative as can be seen in the figure.

The calculation of lower and upper sums involves multiplying values of the function with the

lengths of subintervals. When those values are positive, the products can be seen as the areas

if rectangles whose heights are given by the values of the function. If those values, however,

are negative, then the products will be negative, and we can think of rectangles below the

horizontal axis having negative areas.

7.3 A few basic properties of integrals

1. If a < b < c, and if f is continuous on [a, c], then∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx
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𝑎 𝑏 𝑥 

𝑓 𝑥  

2. If f and g are continuous on [a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx

3. If f and g are continuous on [a, b], and if α, β are real numbers, then∫
(αf(x) + βg(x))dx = α

∫
f(x)dx+ β

∫
g(x)dx

4. [Integral Mean Value Theorem] Let f be continuous over [a, b]. There exists c ∈ [a, b]

such that

(b− a)f(c) =

∫ b

a

f(x)dx.

Proof. Since f is continuous over [a, b], it takes its minimum and maximum values over

this interval. Call these values m and M , respectively so m ≤ f(x) ≤ M , for every

x ∈ [a, b]. Therefore,

m(b− a) ≤
∫ b

a

f(x)dx ≤ M(b− a).

Hence

m ≤ 1

b− a

∫ b

a

f(x)dx ≤ M

On the other hand, by the Intermediate Value Theorem, any value between m and M is

attained by f on [a, b]. Hence there exists c ∈ [a, b], such that 1
b−a

∫ b
a
f(x)dx = f(c). 2

7.4 Integral as antiderivative

Now that we have defined definite integrals of a function f , we can look at an associated

function F defined as

F (x) =

∫ x

a

f(t)dt

(provided that f is integrable of course).
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Fundamental Theorem of Calculus. Let f : [a, b] → R be continuous function, and

F : [a, b]→ R be defined by F (x) =

∫ x

a

f(t)dt. Then

• F ′(x) = f(x) for all x ∈ (a, b).

•
∫ d

c

f(t)dt = F (d)− F (c) for every c and d in [a, b].

Proof. By definition, F ′(x) is:

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

∫ x+h

a
f(t)dt−

∫ x
a
f(t)dt

h

= lim
h→0

∫ x+h

x
f(t)dt

h
= lim

h→0
f(ch) for some ch ∈ [x, x+ h] by IMVT.

Since ch ∈ [x, x+ h], and f is continuous, we know that f(ch)→ f(x) as h→ 0.

As for the second part, we have by definition F (d) =
∫ d
a
f(t)dt and F (c) =

∫ c
a
f(t)dt.

Writing ∫ d

a

f(t)dt =

∫ c

a

f(t)dt+

∫ d

c

f(t)dt

and rearranging, we get∫ d

c

f(t)dt =

∫ d

a

f(t)dt−
∫ c

a

f(t)dt = F (d)− F (c)

2

Thus, the Fundamental Theorem of Calculus lets us think of integrals as sort of “antideriva-

tives”. This antiderivative of f is unique up to a constant. It is customary to call this the

indefinite integral of f , though it is important to keep in mind that it is really an antideriva-

tive, and not the.

7.5 Integration by parts

The so-called “integration by parts” is often expressed concisely as∫
udv = uv −

∫
vdu

In this notation, both u and v stand for functions of a variable, say x. Moreover

dv stands for v′(x)dx

and

du stands for u′(x)dx
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So, what’s really meant by the above formula is∫
u(x)v′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx

In order to see where this comes from, simply rearrange it to obtain∫
u(x)v′(x)dx+

∫
v(x)u′(x)dx = u(x)v(x)∫

(u(x)v′(x) + v(x)u′(x))dx = u(x)v(x)∫
(u(x)v(x))′dx = u(x)v(x)

which is nothing but the fundamental theorem of calculus applied to the function uv.

7.6 Change of variables

Recall the chain rule: if u is defined around t and differentiable at t, and if f is defined around

u(t), and differentiable at u(t), then f ◦ u is differentiable at t with the derivative

(f ◦ u)′(t) = f ′(u(t))u′(t)

By the fundamental theorem of calculus, the integral of the left hand side is f(u(t)) + C,

so we can write

f(u(t)) + C =

∫
f ′(u(t))u′(t)dt

But, let us express the right hand side a bit differently. In particular, let’s “forget about t”

for a moment, and adopt the notation

du = u′(t)dt

so that the integral can be rewritten as ∫
f ′(u)du.

This last expression is integration with respect to u. By the fundamental theorem of calculus,

it is equal to

f(u).

But recall that u = u(t), so indeed the answer is f(u(t)).

The natural logarithm

The natural logarithm is a function lnx : R>0 → R specified as

lnx =

∫ x

1

1

t
dt

Note that
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• ln 1 = 0

• lnx is strictly increasing

• If x ∈ (0, 1), then lnx < 0

• By the fundamental theorem of calculus:

(lnx)′ =
1

x

What is the range of ln?

Or put differently what are the limits limx→0 lnx and limx→∞ lnx?

Using the interpretation of integral as area, we will have a closer look at the question of

how lnx behaves as x goes to ∞ or to 0. First let’s observe that the boxes that lie on the

x-axis and below the curve y = 1/x in the following figure all have the same width 1, and

decreasing heights given by
1

2

1

3

1

4
and so on

4

3

2

1

1 2 3 4

Graph of y =
1

x

Our next observation is that adding up the areas of the n shaded boxes lying on the x-axis

from left to right would amount to

1

2
+

1

3
+

1

4
+ · · ·+ 1

n

and this area must be smaller than the area underneath the curve from x = 1 to x = n given

by ∫ n

1

1

x
dx
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Thus we can conclude that

lnn >
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

Now, if we can show that the series

∞∑
i=1

1

i
=

1

2
+

1

3
+

1

4
+ · · ·

diverges, then we can conclude that lnn→∞ as n→∞.

So, now let’s turn out attention to that series and observe that

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+ · · ·+ 1

16
+ · · ·

>
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+

1

16
+ · · ·+ 1

16
+ · · ·

because comparing the two series term-by-term, the bottom series has equal or smaller terms

at every term.

And finally, observe that the latter series

1

2
+

1

4
+

1

4︸ ︷︷ ︸
1
2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
1
2

+
1

16
+

1

16
+ · · ·+ 1

16︸ ︷︷ ︸
1
2

+ · · ·

will involve infinitely many groups each of which adds up to 1/2. Thus this last series diverges

to ∞, therefore the top series diverges, and therefore lnn diverges to ∞.

How about limx→0 lnx? For this one, note that

lim
x→0

lnx = −(Area underneath the curve from x = 0 to x = 1)

But that area clearly is bigger than the same series above, and thus diverges to ∞, which

means ln x diverges to −∞ as x→ 0.

Thus we can conclude that the range of the natural logarithm functions is the whole real

line.

So far, we have established that ln : R>0 → R is a strictly increasing function, differentiable

function whose range is R. (Hence it has an inverse whose domain is R and range is R>0.)

Moreover, ln 1 = 0.

Here’s a fundamental and less obvious property

For any a, b > 0, ln(ab) = ln a+ ln b

Proof. Let f : R>0 → R be defined by f(x) = ln(ax). Since f is the composition of two

differentiable functions (namely ln and multiplication by a), it is differentiable too with the

derivative

f ′(x) =
1

ax
× a =

1

x
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Since f and ln has the same derivatives, it must be that they differ by a constant, i.e.,

f(x) = C + lnx where C is a constant.

Evaluating f at x = 1 yields f(1) = ln a. Evaluting the above equation at x = 1 yields

f(1) = C

Thus ln(ax) = f(x) = ln a + lnx. Since a > 0 is an arbitrary number, the equation ln(ab) =

ln a+ ln b holds for all a, b > 0. 2

Other logarithm functions

Given a > 0, we will define logarithm with base a as

loga x =
lnx

ln a

The exponential function

Since the natural logarithm

ln : R>0 → R

is one-to-one and onto, it admits an inverse function from R to R>0 which we will call the

exponential function, denoted by exp.

The fact that exp is the inverse of ln can be used in a fairly straightforward fashion to

obtain the following properties:

• expx > 0 for all x ∈ R

• lim
x→−∞

expx = 0 and lim
x→∞

expx =∞

• exp 0 = 1

• exp(x+ y) = exp x exp y

Hint: Differentiate exp(x+ y)/ expx with respect to x.

• The derivative of exp is itself, that is, (expx)′ = expx

Hint: Differentiate the function ln ◦ exp via the chain rule.

Raising a number to an arbitrary power x

Now, given a real number a > 0, let us define the function ax. We sometimes talk about raising

a to a power, but if that power x is not a rational number, it is not as easy to make sense of

this with the interpretation of multiplying a with itself x times. But the following definition

does make sense

ax = exp(x ln a)

since we know what ln a means (the integral of 1/x from 1 to a), and we know what the

exponential of x ln a means (the inverse image of x ln a under the natural logarithm function).

Now, it is not hard to establish the following:
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• (expx)y = exp(xy)

• ax+y = axay

• (ax)y = axy

• axbx = (ab)x

• lnxy = y lnx for all x > 0 and y

• loga x is the inverse of ax

• loga(xy) = loga x+ loga y for all a, x, y > 0

• loga x
y = y loga x for all x > 0 and y

Exercise. Evaluate the derivative and the integral of ax.
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8 Taylor series

8.1 Taylor polynomials

Suppose f is differentiable at least n times around the point a. Define the n-th degree Taylor

polynomial of f around the point a as

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n

Observation 0. The function Pn agrees with f at a. That is, Pn(a) = f(a).

Observation 1. The derivative of the function Pn agrees with the derivative of f at a. That

is, P ′n(a) = f ′(a), because

P ′n(x) = f ′(a) + f ′′(a)(x− a) +
f ′′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

(n− 1)!
(x− a)n−1

Observation 2. Differentiating P ′n, we get

P ′′n (x) = f ′′(a) + f ′′′(a)(x− a) + · · ·+ f (n)(a)

(n− 2)!
(x− a)n−2

and evaluating this at the point a, we end up with f ′′(a).

...

Observation k. Continuing in the same fashion, we will find that

P (k)
n (a) = f (k)(a) for each k = 1, . . . , n.

If we know the values f(a), f ′(a), f ′′(a), . . . , f (n)(a), we can construct an nth degree poly-

nomial Pn which has this same “local information” as f in the sense that Pn and f have

the same value at a, and have the same 1st to nth order derivatives at a.

QUESTION. Is using Taylor polynomials a good way to approximate a function?

Sometimes, but not always!

8.2 Taylor series

If f is infinitely differentiable at a point a, then we can construct Taylor polynomials of all

degrees n > 0, and talk about their limit:
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When f has derivatives of all orders at x = a, its Taylor series about the point x = a is

∞∑
k=0

f (k)(a)

k!
(x−a)k = f(a)+f ′(a)(x−a)+

f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+· · ·+f

(k)(a)

k!
(x−a)k+· · ·

A few possibilities for the above series:

1. The series diverges for some x. If so, the Taylor polynomials Pn do not provide a good

approximation to f at x.

2. The series converges for x, but to a value other than f(x). If so, once again, the Taylor

polynomials Pn do not provide a good approximation to f at x.

3. The series at x converges to f(x). If so, the Taylor polynomials provide a method to

approximate the function at x.

We will mostly deal with Case 3: when dealing with a Taylor series expansion around a

point a, this series will indeed converge to f(x) for those x which are in some neighbourhood

of a. Such functions are called analytic.

How good is such an approximation? That is, can we say anything about how far off

the Taylor polynomial is from the original function?

That is,

How large is the error term Rn(x) = f(x)− Pn(x) ?

8.3 Taylor’s Remainder Theorem

Taylor’s Remainder Theorem.

If f is n times continuously differentiable on [a, x], and n + 1 times differentiable on

(a, x), then

Rn(x) =

∫ x

a

f (n+1)(t)

n!
(x− t)ndt =

f (n+1)(c)

(n+ 1)!
(x− a)n+1 for some c ∈ [a, x]

An example on Taylor series and Taylor’s remainder theorem

1. What is the Taylor series expansion of f(x) = ln(1 + x) around the point 0?

2. Provide a numerical estimate for the value ln(1.01) which you know is correct up to

maximum error of 10−6.

Solution.
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1. In order to explore its Taylor series around x = 0, we will evaluate f(0), f ′(0), f ′′(0), . . ..

First, note that

f ′(x) =
1

1 + x

f ′′(x) =
−1

(1 + x)2

f ′′′(0) =
2

(1 + x)3

...
...

...

f (k)(x) =
(−1)k+1(k − 1)!

(1 + x)k

Evaluating the above expressions at x = 0, and plugging them into the Taylor series

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=1

(−1)k(k − 1)!

k!
xk =

∞∑
k=1

(−1)k+1

k
xk = x− x2

2
+
x3

3
− x4

4
+ · · ·

2. Using Taylor polynomials for ln(1 + x), we can estimate ln(1.01).

Note that ln(1.01) = ln(1 + 0.01) = f(0.01). So, using the second degree Taylor

polynomial of the function ln(1 + x), the remainder theorem tells us that

|f(0.01)− P2(0.01)| =

∣∣∣∣f (3)(c)

3!
(0.01)3

∣∣∣∣ for some c ∈ [0, 0.01]

=
1

3(1 + c)3
(0.01)3

≤ 0.34× 0.000001 = 0.00000034

P2(x) = x− x2

2
, so we can easily compute P2(0.01):

P2(0.01) = 0.01− 0.0001

2
= 0.01− 0.00005 = 0.00995

Thus we can conclude

ln(1.01) ≈ 0.00995 with an accuracy level of 0.00000034
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9 Multi-variable functions

We have already introduced functions from Rn to R in Section 2.5. Now, we have a closer look

with an aim towards generalising the analysis we have so far done for single-variable functions.

9.1 Partial derivatives

When addressing questions of optimisation and rate of change in the context of single-variable

functions, differentiation proved to be useful. So, we may want to adapt the definition of

differentiability to multi-variable functions. For example, we can ask:

Given f : Rn → R does lim
x→a

f(x)− f(a)

x− a
exist?

One problem with the above formulation is that while f(x) − f(a) is a real number, x − a
is a point in Rn, and it doesn’t make sense to divide an element of R with an element of Rn

when n > 1. Instead of looking for a way of getting around this, we will now turn to a more

manageable approach as far as differentiating multi-variable functions go.

Given a multi-variable function f(x1, . . . , xn), viewing it as a function of x1 alone means

analysing the behaviour of the single-variable function given by

x1 7−→ f(x1, x2, . . . , xn)

Note that, for every specification of x2, . . . , xn, we’d get another function. For example

x1 7−→ f(x1, a2, . . . , an)

is yet another single-variable function, and the derivative of this function will be called the

partial derivative of f with respect to its first variable at (x1, a2, . . . , an).

In this fashion, we can define the partial derivative of f with respect to its first

variable as the following function from Rn to R:

∂f

∂x1

: (x1, . . . , xn) 7−→ lim
h→0

f(x1 + h, x2, . . . , xn)− f(x1, x2, . . . , xn)

h

A careful notation for the evaluation of this function at a specific point a = (a1, . . . , an) ∈
Rn is

∂f

∂x1

∣∣∣∣
x=a

Likewise we define the partial derivative of f with respect to its kth variable xk as:

∂f

∂xk
= lim

h→0

f(x1, . . . , xk + h, . . . , xn)− f(x)

h

For brevity, we sometimes write fk instead of ∂f/∂xk when we talk about the partial derivative

of f with respect to its kth variable.
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An important property about second partial derivatives: Young’s theorem

If a function f : Rn → R has continuous second partial derivatives at a, then

fij(a) = fji(a)

Written in an alternative notation

∂2f

∂xj∂xi
(a1, . . . , an) =

∂2f

∂xi∂xj
(a1, . . . , an)

This property (Young’s theorem) is sometimes quoted as mixed partials commuting. We will

mostly deal with multi-variable functions whose second partial derivatives are continuous, and

therefore it won’t matter in which order we take partial derivatives.

9.2 The chain rule with multi-variable functions

Remember that the chain rule is about relating the derivative of composition of functions to

the derivatives of the functions composed. For example, when we have two functions f and

g from R to R, say differentiable everywhere for ease of exposition, the composition f ◦ g is

differentiable with the derivative

(f ◦ g)′(x) = f ′(g(x))g′(x)

Now, we’d like to generalise this result to be able to relate the derivatives of the three

functions

f : R2 → R x : R→ R y : R→ R

to the derivative of the function from R to R defined by

t 7−→ f(x(t), y(t)) (♥)

We were being very careful in not referring to f(x(t), y(t)) as a function because without

any clarification as to what the variable is, it is not obvious how this expression describes a

function. In contrast, expressing it as in (♥) above makes it clear that we are talking about a

single-variable function.

The Chain Rule. Suppose f : R2 → R has continuous partial derivatives with respect

to both its variables. If x and y are differentiable functions from R to R, then

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))x′(t) +

∂f

∂y
(x(t), y(t))y′(t)

The notation on the right hand side is prone to confusion, because when we write ∂f
∂x

we

are not really referring to the function x : R → R. Rather, we are talking about partially

differentiating f : R2 → R with respect to its first variable. The whole thing has some feel

of consistency in that we are thinking of the first variable and the second variable of f as
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functions of yet another variable t. As t changes, the variables of f change, and those changes

in the variables of f are described by x(t) and y(t). The expression of the left hand side is

really the derivative (with respect to t) of the function defined by (♥).

Sometimes, you see the chain rule expressed in Leibniz notation

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

which is potentially confusing from a notational perspective (since what stands for variables

of which function is implicit), but is more concise.

Yet another alternative notation for partial derivatives is to write fi for the partial derivative

of f with respect to its ith variable. So, the chain rule can also be expressed as

d

dt
f(x1(t), x2(t)) = f1(x1(t), x2(t))x′1(t) + f2(x1(t), x2(t))x′2(t)

Or we can stick to referring to the variables of f as x and y, and denote the corresponding

partial derivatives by fx and fy. Then the chain rule will look like

d

dt
f(x(t), y(t)) = fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

Challenge. In order to give an idea as to how the chain rule comes about for single-variable

functions, we gave an intuitive explanation based on the interpretation of the derivative as the

slope of a linear approximation. Can you extend that idea to the more general form of the

chain rule given above?

9.3 Differentials for multi-variable functions

Suppose f is a real-valued function with n real variables, i.e., an Rn → R function. Its partial

differential with respect to its ith variable is an Rn+1 → R function with the following

mapping

(x,∆xi) 7−→ fi(x) ∆xi where fi =
∂f

∂xi
(x)

The common shorthand notation for this function, however, is

fi dxi

Sum of all its partial differentials is called the total differential (or total derivative) of

f , denoted df :

df = f1dxi + · · ·+ fndxn

If each xi were to be a function of a variable t, then by plugging dxi = x′idt, we obtain

df = f1x
′
1dt+ · · ·+ fnx

′
ndt = (f1x

′
1 + · · ·+ fnx

′
n)dt

which is another way of stating the chain rule for multi-variable functions.
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Example

A macro model of a closed economy consists of the following equations

Y = C + I +G

M = MD

where Y is income, C is consumption expenditure, I is investment, G is net government

spending, M is the money supply, and MD is the demand for money. In addition, you are told

that consumption expenditure is a function of income, investment is a function of the interest

rate r, and the demand for money is a function of both income and the interest rate.

When the system is very close to equilibrium, how are changes in the endogenous variables

Y and r related to changes in the exogenous variables G and M?

The exogenous variable G features in the first equilibrium equation. Also we are told that

Y and r are the endogenous variables. Using the chain rule, let’s differentiate the first equation

with respect to G to obtain

dY

dG
= CY

dY

dG
+ Cr

dr

dG
+ IY

dY

dG
+ Ir

dr

dG
+
dG

dG

where the subscripts stand for partial derivatives. The partial derivatives Cr and IY are zero,

so the above expression simplifies to

dY

dG
= CY

dY

dG
+ Ir

dr

dG
+
dG

dG

which we can rewrite as

dG = dY − CY dY − Irdr

The exogenous variable M features in the second equilibrium equation. Differentiating that

equation with respect to M

dM

dM
=

dMD

dM

= MD
Y

dY

dM
+MD

r

dr

dM

which we rewrite as

dM = MD
Y dY +MD

r dr

Combining the two equations we derived above in matrix notation(
dG

dM

)
=

(
1− CY −Ir
MD

Y MD
r

)(
dY

dr

)
Solving the above matrix equation for dY and dr, we obtain

dY =
MD

r dG+ IrdM

MD
r −MD

r CY +MD
Y Ir

dr =
−mD

Y dG+ (1− CY )dM

MD
r −MD

r CY +MD
Y Ir
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If we want to express dY/dG and dY/dM separately, we can compute them from dY as

dY

dG
=

MD
r

MD
r −MD

r CY +MD
Y Ir

dY

dM
=

Ir
MD

r −MD
r CY +MD

Y Ir

9.4 The derivative of an Rn → Rm function

We have already talked about the partial derivatives of a function f : Rn → R. Differentiability

of such a function, however, is more demanding than the existence of partial derivatives. Even

more generally than Rn → R functions, we can talk about the derivative of a multi-variable

function with vector values as in f : Rn → Rm. As it was for R→ R functions, differentiability

of f at a point a is related to whether it has a linear approximation at that point. If the linear

approximation is

f(x) ≈ f(a) +α(x− a),

where α is an m× n matrix, then f has derivative α. Note that f(x) and f(a) are vectors in

Rm, whereas (x− a) is a vector in Rn. Formally,

A function f : Rn → Rm is differentiable at a with derivative α if

f(a+ δ)− f(a)−αδ
‖δ‖

→ 0 as δ → 0.

The m× n matrix α is called the derivative of f at a and is denoted by f ′(a) or Df(a).

Equivalently, using the little-oh notation,6

f(a+ δ) = f(a) +αδ + o(‖δ‖).

This gives us the first order Taylor series approximation around a:

f(a+ δ) ≈ f(a) + f ′(a)δ.

This all looks very much like the expressions for functions from R to R, but keep in mind that

a is a point in Rn and f is a function from Rn to Rm. The derivative f ′(a) is an m×n matrix,

and δ is a vector in Rn. When we write αδ, we plug in δ as an n × 1 column matrix. The

approximation gets better and better as δ gets closer to 0 in the sense that the error term

f(a+ δ)− f(a)− f ′(a)δ approaches to 0 much faster than ‖δ‖.

If f is differentiable at every point a of a domain A ⊆ Rn, then we say f is differentiable

in A. If the derivative is continuous, f is continuously differentiable.

The matrix f ′(a) is also known as the Jacobian of f at a, and in order to highlight its

multi-dimensional nature some writers prefer the notation Df(a). If f : Rn → Rm, we can

write

f(x1, . . . , xn) = (f 1 (x1, . . . , xn), . . . , fm(x1, . . . , xn)),

6For a function g(z) to be of o(z) means g(z)/z → 0 as z → 0.
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and the derivative of f at x is given by:

Df(x) =


∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
. . .

...
∂fm

∂x1
(x) · · · ∂fm

∂xn
(x)


9.5 Special case of Rn → R functions

If the multivariable function of interest is real valued (as is common in many of the applications

we will study), a widely used notation for the derivative is

∇f(x) = (f1(x), f2(x), . . . , fn(x)),

So the symbol ∇ is used in stead of D (which was used in higher dimensions). ∇f(x) is also

called the gradient of f .

Differentiability of f means for small δ = (δ1, . . . , δn) ∈ Rn, we have the following approxi-

mation

f(x+ δ) ≈ f(x) +∇f(x) · δ
= f(x) + f1(x)δ1 + f2(x)δ2 + · · ·+ fn(x)δn

The second derivative of f is the rate of change of its first derivative, i.e., it is the rate of

change of the vector ∇f(x) = (f1(x), f2(x), . . . , fn(x)). The rate of change of entry fi(x) is

itself a vector, namely ∇fi(x) = (fi1(x), fi2(x), . . . , fin(x)). Thus, we get the second derivative

of f expressed as an n× n matrix called the Hessian matrix of mixed partial derivatives.

Suppose f : Rn → R is twice differentiable at x. The Hessian of f is the n×n symmetric

matrix

f ′′(x) = D2f(x) =

∇f1(x)
...

∇fn(x)

 =

f11(x) . . . f1n(x)
...

...

fn1(x) . . . fnn(x)


where fij(x) = ∂2f

∂xj∂xi
(x).

We can now write the second-degree Taylor series approximation for f :

f(x+ δ) = f(x) + f ′(x) · δ +
1

2
δf ′′(x)δᵀ + o(‖δ‖2)

Remember the little-oh notation: for a function R(z) to be of o(z) means R(z)/z → 0 as z → 0.

Hence, the term denoted by o(‖δ‖2) is a quantity Q such that Q/‖δ‖2 → 0 as δ → 0.
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9.6 Implicit differentiation

Consider a production function f(K,L) where K stands for capital, and L stands for labour.

Suppose the production target is fixed, say, at ω. We want to understand how the amounts of

K and L delivering this output relate to each other. Assuming production goes up with both

K and L, we know that we need to increase one input while another decreases in order to keep

the level of production the same as before. But by how much? For example, if we decrease

capital by some amount, by how much should labour be increased so that we keep the level of

production at ω?

If we could solve for L in the equation

f(K,L) = ω

for every value of K in some interval I, then we can express L as a function of K:

K 7→ L = L(K;ω)

If this function “behaves well”, we can take the derivative of this expression to get the rate of

substitution between K and L while we are ensuring the production level ω. (Note that this

will tell us something about the slope of the tangent to the isoquant curve.)

Example. Let f(K,L) = 3K2L + KL2. When K = L = 1, the total production is 4. If we

want to keep the production at that level, how much change in K would compensate a small

change in L? In other words we would like to compute

∂K

∂L

Solving for K from the equation 3K2L + KL2 = 4 might be messy. But we don’t really need

to solve for K. We can simply differentiate the equation with respect to L assuming that K

can indeed be expressed as a function of L. So we have

∂

∂L
(3K2L+KL2) =

∂4

∂L

6K
∂K

∂L
L+ 3K2∂L

∂L
+
∂K

∂L
L2 +K · 2L∂L

∂L
= 0

(6KL+ L2)
∂K

∂L
+ 3K2 + 2KL = 0

Now we can evaluate these at K = L = 1 to get

7
∂K

∂L

∣∣∣∣
K=L=1

+ 5 = 0

and therefore
∂K

∂L

∣∣∣∣
K=L=1

= −5

7

3
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What we have done in the above example is called implicit differentiation. We were

interested in ∂K/∂L evaluated at K = L = 1. Instead of expressing L as a function of K and

differentiating it with respect to L, we differentiated the equation which relates K to L, used

the fact that ∂L/∂L = 1, and then plugged in K = L = 1 to get what we were looking for.

Why did we use the partial differentiation symbol ∂? In this particular case, we did not

have to, but in principle, we could have ω as another variable, and think of K as a function of

L and ω. The above exercise was keeping ω constant (namely at ω = 4), while differentiating

with respect to L.

Another example. Consider the unit circle, i.e., the set of points (x, y) in the real plane

which satisfy the equation x2 + y2 = 1. What is the rate of change in y with respect to a

change in x around the point (1, 0)? Again, we can avoid solving the equation for y in terms

of x, and go straight into differentiating the equation with respect to x:

2x+ 2y
dy

dx
= 0

However, evaluating this at x = 1 and y = 0 gives 2 = 0, a contradiction!

What went wrong? Now going back to the derivative of the equation, note that if y 6= 0,

we get
dy

dx
= −x

y

and therefore dy
dx

diverges as y → 0. What is going on around the point (1, 0)?

Note that however close we get to the point (1, 0), that is, in every neighbourhood of the

point (1, 0), there are two different values of y which solves the equation x2 +y2 = 1. When we

are trying to express y as a function x, should we pick g(x) =
√

1− x2 or h(x) = −
√

1− x2?

The fact that we cannot solve uniquely turns out to be intimately connected with the fact that

we did not have a well defined dy
dx

at (1, 0).

By the way, if y can be expressed as a function of x with an inverse, then we have x as a

function of y. If y = g(x) and if g−1 is its inverse, then x = g−1(y), and the derivatives satisfy

dy

dx
= g′(x) =

1

(g−1)′(y)
=

1
dx
dy

The issue of dy
dx

diverging can be reinterpreted as dx
dy

being 0 at (1, 0). In fact the theorem

below says this derivative being nonzero allows us to solve y as a uniquely defined function of

x around a given point satisfying the equation. 3
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Implicit Function Theorem in 2 × 1 dimensions. Suppose F (·, ·) is continuously

differentiable in some neighbourhood of (a, b). If F (a, b) = 0, and if F2(a, b) 6= 0, then

there exist N(a, δ1) and N(b, δ2), and there exists a unique function g : N(a, δ1)→ N(b, δ2)

such that

• For every x ∈ N(a, δ1), F (x, g(x)) = 0.

• The function g is continuously differentiable in N(a, δ1).

When the theorem holds, differentiating the equation F (x, g(x)) = 0 with respect to x

yields

F1(x, g(x)) + F2(x, g(x))g′(x) = 0

which then implies for every x ∈ N(a, δ1),

g′(x) = −F1(x, g(x))

F2(x, g(x))
.

The theorem has a higher dimensional version which rests on a similar intuition:

Implicit Function Theorem. Given a function F : Rm+n → Rn, let us denote the

first m variables of F as x1, . . . , xm, and the last n variables as y1, . . . , yn. Since F takes

values in Rn, we can write it as F = (f 1, . . . , fn), with the functions f i : Rm+n → R
for i = 1, . . . n. Suppose all f i are continuously differentiable in some neighbourhood of

(a, b) = (a1, . . . , am; b1, . . . , bn). If F (a, b) = 0, and if the Jacobian of F with respect to y

evaluated at (a, b) is non-singular, i.e., if∣∣∣∣∣∣∣
∂f1

∂y1
(a; b) · · · ∂f1

∂yn
(a; b)

...
. . .

...
∂fn

∂y1
(a; b) · · · ∂fn

∂yn
(a; b)

∣∣∣∣∣∣∣ 6= 0,

then there exist neighbourhoods N(a, δ1) ⊂ Rm and N(b, δ2) ⊂ Rn; and for each i =

1, . . . , n there exists a unique function gi : N(a, δ1)→ N(b, δ2), such that

F (x; g1(x), . . . , gn(x)) = 0 for every x ∈ N(a, δ1),

and

gi(a) = bi for every i.

Revisiting the last example with the help of IFT

Consider the graph {(x, y) | x2 + y2 = 1}. Around what points can we define y as a function

of x locally? What is dy
dx

around such a point?

Formulating it like in the IFT:

F : R1+1 → R
F (x, y) = x2 + y2 − 1
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We want to be able to parametrise y smoothly as a function of x. IFT says we can do that

around those points where Fy is non-zero. I.e., as long as 2y 6= 0. Note that problematic points

are where dy
dx

is not defined. Everywhere else we have y =
√

1− x2 or y = −
√

1− x2. 3

Another example on the IFT

The point (α, u, v) = (2,−1, 2) satisfies the following two equations:

α2 + uv − v2 + 2 = 0

α + u2 + uv − 1 = 0

(a) Can u and v be defined as implicit functions of α around the point (2,−1, 2)?

(b) Compute du/dα and dv/dα at this point.

Solution. Two equations, three variables. In order to use the IFT, we will rephrase the

ingredients in the format of the statement of the IFT. Let

f : R2+1 → R2

f(u, v, α) = (α2 + uv − v2 + 2, α + u2 + uv − 1)

Denoting

f 1(u, v, α) = α2 + uv − v2 + 2

f 2(u, v, α) = α + u2 + uv − 1

we need a non-singular Jacobian, i.e.

det

(
f 1
u f 1

v

f 2
u f 2

v

)
6= 0

Note that(
f 1
u f 1

v

f 2
u f 2

v

)
=

(
v u− 2v

2u+ v u

)
=

(
2 −5

0 −1

)
at (u, v, α) = (−1, 2, 2)

For comparative statics, remember that α is related to u and v via the equations:

f 1(α, u, v) = α2 + uv − v2 + 2 = 0

f 2(α, u, v) = α + u2 + uv − 1 = 0

Differentiating both equations with respect to α gives

f 1
u

du

dα
+ f 1

v

dv

dα
= 0

f 2
u

du

dα
+ f 2

v

dv

dα
= 0

which we can write as (
f 1
u f 1

v

f 2
u f 2

v

)(
du
dα
dv
dα

)
= 0

Hence (
du
dα
dv
dα

)
= −

(
2 −5

0 −1

)−1(
f 1
α

f 2
α

)
= −

(
2 −5

0 −1

)−1(
4

1

)
=

(
1/2

1

)
3
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9.7 Concavity and convexity of Rn → R functions

The notions of concavity and convexity can be extended to Rn → R functions in a fairly

straightforward fashion. For our purposes, the multi-dimensional analogue of an interval is a

convex set in Rn. Recall that a set K in Rn is called convex if for every x,y ∈ K and for

every λ ∈ (0, 1), the point λx + (1 − λ)y is also in K. Any such point is called a convex

combination of x and y. It is a good exercise to verify that if we take any k points x1, . . . ,xk

in a convex set K, and arbitrary real numbers 0 < λ1, . . . , λk < 1 such that λ1 + · · ·+ λk = 1,

then the point λ1x
1 + · · ·+ λkx

k is also in K. Any such point is called a convex combination

of the k points x1, . . . ,xk.

Suppose f is a real-valued function defined on a convex subset K of Rn. We say f is

concave over K if for every a, b ∈ K and every λ ∈ (0, 1):

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b).

If the inequality is strict for all a 6= b ∈ K and all λ ∈ (0, 1), then we say f is strictly concave

over K.

Theorem. Suppose K is a convex set. If f : K → R is strictly concave over K, then f

takes its maximum value at most once in K.

Proof. Suppose, for a contradiction, that f attained its maximum value at two different

points a and b in K. The fact that K is convex implies a/2 + b/2 is in K. The fact that f

is strictly concave over K implies f(a/2 + b/2) > f(a)/2 + f(b)/2 = f(a) = f(b). That is,

f takes an even higher value at a/2 + b/2 ∈ K, a contradiction with its taking its maximum

value at a and b. 2

f is called [strictly] convex over a convex set K if −f is [strictly] concave over K.

We would like to obtain tests of concavity/convexity for multi-variable real valued function

akin to the second derivative test for single variable functions. However f ′′ is a more compli-

cated object when f is a multi-variable function. Namely, it is an n × n matrix. Before we

state the relevant testing conditions on this matrix, we will remind a few concepts from linear

algebra.

Quadratic forms

A symmetric n× n matrix A gives rise to a so-called quadratic form:

x 7−→ xAxᵀ

where x is an n-dimensional vector, and xᵀ is its transpose (and hence an n-dimensional column

vector).

For example a general 1 dimensional form is

x 7−→ ax2
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A general 2-D quadratic form is

(
x1 x2

)
7−→

(
x1 x2

)(a11 a12

a12 a22

)(
x1

x2

)
= a11x

2
1 + a22x

2
2 + 2a12x1x2

The matrix A (and the associated quadratic form) is called

• negative semi-definite if xAxᵀ ≤ 0 for all x,

• positive semi-definite if xAxᵀ ≥ 0 for all x,

• negative definite if xAxᵀ < 0 for all x 6= 0,

• positive definite if xAxᵀ > 0 for all x 6= 0

Given an n × n matrix A, its kth-order leading principal minor is the determinant of

the matrix obtained by deleting the last (n− k) rows and columns of A. For example, for the

3× 3 matrix A given by

A =

 a11 a12 a13

a12 a22 a23

a13 a23 a33


its leading first-order principal minor is |a11|, leading second-order principal minor is

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣,
and its leading third-order principal minor is |A|.

Theorem. A symmetric n× n matrix is:

• negative definite iff the leading principal minors alternate in sign: |A1| < 0, |A2| >
0, |A3| < 0, etc., with the kth-order leading principal minor having sign (−1)k.

• positive definite iff all the leading principal minors are > 0.

• indefinite if (but not only if) the leading principal minors are 6= 0 and neither con-

dition above is satisfied

Second derivative conditions for concavity

Remember that for R→ R functions, the second derivative of the function helped us identify

concavity/convexity of a function (and provided us the SOC to classify critical points).

Remember that the second derivative of a function f : Rn → R, also called its Hessian, is

its “matrix of second partial derivatives” given by

D2f(x) =


f11(x) f12(x) · · · f1n(x)

f21(x) f22(x) · · · f2n(x)

· · · ... · · · ...

fn1(x) fn2(x) · · · fnn(x)

 where fij(x) =
∂2f

∂xj∂xi
(x)
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Theorem. Suppose f is twice partial differentiable with continuous second partial deriva-

tives.

• f is concave [convex] iff D2f(x) is negative [positive] semi-definite for all x.

• If D2f(x) is negative [positive] definite for all x, then f is strictly concave [convex].

A special case: two-variables

The Hessian of f : R2 → R at the point c is[
f11(c) f12(c)

f21(c) f22(c)

]
If f has continuous second partial derivatives, we know that f12(c) = f21(c).

In that case we can write the Hessian as[
f11(c) f12(c)

f12(c) f22(c)

]

Let f : D → R have continuous second partial derivatives, where D is a convex subset of

R2.

• If f11(x)f22(x)− (f12(x))2 > 0 and f11(x) > 0 for all x ∈ D, then f is strictly convex

on D.

• If f11(x)f22(x) − (f12(x))2 > 0 and f11(x) < 0 for all x ∈ D, then f is strictly

concave on D.

9.8 Quasiconcave and quasiconvex functions

A common assumption for utility functions is that of quasiconcavity which captures the idea

that a mixture of two choices cannot be worse than both of those choices. To define it formally,

Let X be a convex domain. We say a function f : X → R quasiconcave iff for any x and

y 6= x in X and θ ∈ (0, 1):

f(θx+ (1− θ)y) ≥ min{f(x), f(y)}

f is strictly quasiconcave iff the inequalities above are strict.

Quasiconvexity can be defined by reversing the inequality and replacing min with max.

Thus, it is not hard to see f(x) is [strictly] quasiconcave iff −f(x) is [strictly] quasiconvex.

Strict quasiconcavity of utility functions (or profit functions) is convenient because it en-

sures the uniqueness of the utility maximising choice: if f is strictly quasiconcave and has

attains a maximum at x∗, then x∗ is the unique maximum.
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A few observations on quasiconcavity [quasiconvexity]

Concavity implies quasiconcavity. Likewise, convexity implies quasiconvexity. But not vice

versa. In fact the family of quasiconcave functions are much bigger than those of concave

functions. In the same vein, strictly concave [convex] functions are strictly quasiconcave [qua-

siconvex].

While concavity [convexity] is a cardinal property, quasiconcavity [quasiconvexity] is an

ordinal property, preserved under a transformation by any increasing function. That is, if

f : X → R is [strictly] quasiconcave and g : R → R is [strictly] increasing, then g(f(x)) is

[strictly] quasiconcave.

In 1 dimension, [strict] quasiconcavity means that a function is [strictly] increasing up to

some point and then [strictly] decreasing, i.e. is single peaked. In more dimensions, this must

hold along any line. This peak may be at the far right or far left, as in the following figures:

𝑥 

(a) Quasiconcave

𝑥 

(b) QC

𝑥 

(c) QC

𝑥 

(d) Not QC

𝑥 

(e) Not QC

Figure 2: Quasiconcavity in 1 dimension

Upper contour sets

The upper contour set of f at level k is the set UCSk = {x ∈ X : f(x) ≥ k}. The lower

contour set of f at level k is the set LCSk = {x ∈ X : f(x) ≤ k}.

Thinking of f as a utility function, if x and y are two choices each of which with a payoff

of at least k, then any intermediate choice θx+ (1− θ)y also gives a payoff of at least k. Thus,

we have the following:

f is quasiconcave [quasiconvex] iff all its upper [lower] contour sets are convex.
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(a) The function f (x, y) = −ex − ey is concave.
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(b) It is therefore also quasi-concave: convex upper

contour sets. E.g. the points giving values above −.5
form a convex set.
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(c) The monotonic transform e5f(x,y) is no longer con-

cave.
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(d) But it is still quasiconcave, with convex upper con-

tour sets.

Figure 3: Concavity and quasiconcavity
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(a) UCS2 for g (x, y) = x2 + y2 is not convex, therefore g is

not quasiconcave. On the other hand, g is convex, and hence

is also quasiconvex.
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(b) The function h (x, y) = x3−6x+y2 is neither qua-

siconcave nor convex. We can see both using the same

value of k = 2: neither UCS2 nor LCS2 are convex.

Figure 4: Concavity and quasiconcavity
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10 Optimisation

Given f : Rn → R, suppose we are interested in the maximum (or the minimum) value f takes

over a subset S of the domain. We can write the problem as

max
x

f(x) subject to x ∈ S

We refer to f as the objective function, and x as the optimisation variable. The set S

is the constraint set, i.e., the set over which we are optimising, that is the set of feasible

points among which we will look for the solution to the optimisation problem. For example

for a standard consumer choice problem, the objective function will be a utility function which

represents the consumer’s preferences over possible bundles. The optimisation variable is a

bundle, and the constraint set will typically be the budget set (i.e., the set of all bundles

which are affordable for the consumer). If there are additional constraints, e.g., the consumer

must consume at least 5 bananas, then the constraint set will be a strict subset of the set of

affordable bundles which contain at least five bananas.

When we write arg maxS f(x), we refer to the set of points x∗ ∈ S which satisfy the

property that f(x∗) ≥ f(y) for all y ∈ S. Likewise, a point x∗ ∈ S is in arg minS f(x) iff

f(x∗) ≤ f(y) for all y ∈ S.

In the context of single-variable optimisation, we have already established a few useful

facts. If x is an interior point of the constraint set and if x a local min or a local max of a

differentiable function, then f ′(x) = 0. This is what we called the first order condition (FOC)

for optimisation. FOC is a necessary condition for an interior optimum. If the optimal point is

on the boundary of the constraint set, the FOC need not be satisfied. The points at which FOC

is satisfied are called critical points or stationary points, and can be classified into local

min, local max or saddle points. A global min (if exists) is necessarily a local min. Likewise a

global max (if exists) is a local max. Let’s first look at the following figure for a classification

of extrema.

The function f : R≥0 → R depicted above has:

• Stationary points [a, b] ∪ {c, d}

• Two (strict) local maxima at 0 and c.

– In an interval around each strict local maximum, f takes a strictly lower value.

• A whole interval [a, b] of (non-strict) local minima.7

– In an area around each local minimum, in this interval, f takes a weakly higher

value.

• A saddle point at d

7Note that all the points in (a, b) are also (non-strict) local maxima. The points a and b, however, are not

local maxima.
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𝑓 

𝑥 0 𝑎 𝑐 𝑑 𝑏 

Figure 5: An objective function

– The gradient at d is zero, but there are points arbitrarily close to d where f takes

a strictly higher value, and points arbitrarily close where f takes a strictly lower

value. So d is neither a local min, nor a local max.

• f has a global maximum at 0, i.e., 0 ∈ arg max f .

10.1 Unconstrained optimisation of Rn → R functions

Let f : Rn → R have all its partial derivatives. Suppose the constraint set for the problem of

maximising f is Rn, then we call the problem unconstrained.

First, observe that if x∗ = (x∗1, . . . , x
∗
n) is a solution to our problem, i.e., if it maximises

[minimises] f : Rn → R, then it must be that x∗1 maximises [minimises] the function

g(·) : R→ R defined as g(u) = g(u, x∗2, . . . , x
∗
n).

This implies that at u = x∗1, the FOC for single-variable optimisation holds, that is,

g′(x∗1) = 0

Rewriting this last equation
∂f

∂x1

(x∗1, . . . , x
∗
n) = 0

Repeating the above argument for x2, . . . , xn, we conclude that at x = (x∗1, . . . , x
∗
n), the

first order condition holds for f with respect to each variable separately:
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FOC for unconstrained optimisation. Suppose x∗ ∈ Rn is a local max or a local min

of a function f : Rn → R. If f is differentiable at x∗, then

∂f

∂xi
(x∗1, . . . , x

∗
n) = 0 for all i.

Note that the FOC holds at saddle points as well. In order to determine whether a critical

point is indeed a local max or a local min we will turn to the second order conditions.

10.2 Second order conditions (SOC) for extremum points

While the FOC is necessary for an interior point x∗ to be a local extremum, it doesn’t tell us

whether this point is a local max, local min or a saddle point. The second derivatives come in

handy at this point.

Suppose f is twice differentiable around an interior critical point x∗.

Second Order Sufficient Condition: x∗ is a strict local max if the Hessian matrix of

f at x∗, that is, D2f(x) is negative definite.

(In this case, x∗ is called a regular maximum, which has the nice property that the

solution is continuous and differentiable in the parameters.)

Second Order Necessary Condition: If x∗ is a local max, then the Hessian of f at x∗,

that is, D2f(x) is negative semi-definite.

The logic behind the SOC. In order to see how the second order conditions work, look at the

second order Taylor approximation of f around the point x∗:

f(x∗ + δ) ≈ f(x∗) + f ′(x∗) · δ +
1

2
δf ′′(x∗)δᵀ

Since the FOC implies f ′(x∗) = 0, the above Taylor approximation reduces to

f(x∗ + δ) ≈ f(x∗) +
1

2
δf ′′(x∗)δᵀ

For local min, replace “negative” with “positive” in the above statements.

A few conclusions

Suppose the domain of f is a convex set K.

• If f is concave [convex] on K, then the FOC implies a global max [min] over K.

• If SONC is satisfied globally, i.e., if f ′′ is negative semi-definite everywhere, then FOC

implies a global max.
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• If f ′′ is positive semi-definite everywhere, then FOC implies a global min.

• If f is strictly concave [convex], FOC implies a unique global max [min].

• If f is [strictly] quasiconcave, and satisfies FOC and SOSC at x∗, then x∗ is the [unique]

global max.

10.3 The envelope theorem for unconstrained optimisation

Given f : Rn → R, consider the unconstrained optimisation problem

max
x

f(x, α)

where α is an exogenous parameter, i.e., a variable of f , but not a choice variable of the

optimisation problem. Therefore, solving the above problem is solving for optimal x for a

given α. Hence, we will denote the solution by x∗(α) in order to keep track of the fact that

this optimal choice indeed depends on the value of the parameter α. For simplicity let us

denote by v(α) the achieved value of the function when the maximisation problem is solved

for a given α. That is, we define the so-called value function as v(α) = f(x∗(α), α).

If the maximiser x∗(α) is differentiable, then:

dv

dα
=

∂f

∂α

∣∣∣∣
x=x∗

That is,

The rate of change

of the optimal value

with respect to the parameter

=

The rate of change

of the objective function

with respect to the parameter,

evaluated at the optimal solution

Proof. Given parameter α, the optimal value of the objective function is

v(α) = f(x∗(α), α)

where x∗(α) is the solution to

max
x

f(x, α)

Differentiating v(α) using the Chain Rule

dv

dα
=

∂f

∂x1

∣∣∣∣
x=x∗

dx∗1
dα

+ · · ·+ ∂f

∂xn

∣∣∣∣
x=x∗

dx∗n
dα

+
∂f

∂α

∣∣∣∣
x=x∗

dα

dα

We know that the FOC is satisfied at the solution, that is,

∂f

∂x1

∣∣∣∣
x=x∗

= · · · =
∂f

∂xn

∣∣∣∣
x=x∗

= 0,
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and dα/dα = 1, hence the expression for dv/dα simplifies to

dv

dα
=
∂f

∂α

∣∣∣∣
x=x∗

2

It is common to refer to ∂f
∂α

as the direct effect of changing α on the value of f(x, α).

This term ignores the effect of change in x∗(α).

What’s often called an indirect effect has to do with the fact that a change in α leads to

a change in the optimal choice x∗, and through that change we have a change in the value of

f(x∗, α). This is captured by
∑
fi
dx∗i
∂α

.

The envelope theorem rests on the observation that marginal changes in the exogenous

parameter have zero indirect effect on the value function. (Note the distinction between the

objective function and the value function.)

10.4 Using IFT to do comparative statics

Consider the problem max f(x, α) over x ∈ R (or more generally x ∈ Rn). Suppose there is a

unique maximiser x∗(α). That is, given parameter α, the optimal x∗ is unique. We’d like to

see how x∗ varies as a function of α.

The maximiser x∗(α) must satisfy the FOC:

∂f

∂x
(x∗(α), α) = 0 (FOC)

Given that there is a unique solution x∗ for each α, the FOC defines x implicitly in terms

of α. Solving this equation for x∗(α), and then differentiating the solution with respect to

α should deliver the desired comparative static exercise. However, solving such an equation

might be quite cumbersome. Luckily, computing dx∗/dα often does not require solving for a

functional expression for x∗(α).

Instead, let us begin by differentiating (FOC) with respect to α. Using the chain rule:

d

dα

(
∂f

∂x
(x∗(α), α)

)
= fxx

dx∗

dα
+ fxα = 0, ( d

dα
FOC)

so

dx∗

dα
= −fxα

fxx

When x is one-dimensional, x∗(α) being the unique maximum means the second derivative of

f at that point (i.e., fxx) is negative. Hence, if fxα > 0, then dx∗

dα
> 0. Likewise, fxα < 0

implies dx∗

dα
< 0. Thus the sign of fxα > 0 is sufficient for us to know the direction of change in

the maximiser as a result of a change in α. (Often this direction of change is what we want to

know.)
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If f is from Rn+1 to R with n > 1 (i.e., x is n > 1 dimensional), then fxx in the expression
d
dα

FOC becomes the Hessian matrix:

H =

 f11 . . . f1n

...
. . .

...

fn1 . . . fnn

 evaluated at x∗(α) = (x∗1(α), . . . , x∗n(α))

and (
dx∗

dα

)ᵀ

=

(
dx∗1
dα

, . . . ,
dx∗n
dα

)
= −H−1 (fx1α, . . . , fxnα)

ᵀ

Note: For multiple parameters (as in α, β, γ, etc. in f(x, α, β, γ, . . .)), we would work with

the partial derivatives ∂x∗

∂α
, ∂x∗

∂β
, ∂x∗

∂γ
, etc.

Example. A monopolist has constant marginal cost C of production. The demand for the

monopolist’s product is such that when it supplies the market with q units, the resulting market

price A−Bq. Hence its profit as a function of its supply is π(q) = q(A−Bq − C).

Assume an interior optimum with q > 0. πqq = −2B, so the SOC is satisfied and we

can apply implicit function theorem results. Let’s find the effect of changing the parameters

without even solving the problem.

The optimal quantity varies as a function of A, and this dependence is captured by dq∗/dA,

which is equal to
dq∗

dA
=
πqA
πqq

=
1

2B

Thus q∗ increases as A increases.

Likewise, we have
dq∗

dB
=
πqB
πqq

=
−2q∗

2B
= −q

∗

B
,

so q∗ decreases in B.

Finally,
dq∗

dC
=
πqC
πqq

=
−1

2B
,

and therefore q∗ is decreasing in C. 3

Example. Given parameters p, q, a firm chooses x ≥ 0 and y ≥ 0 to maximise π = px+ qy −
x3 − (y − 2x)2.

1. Suppose p = 8, q = 2. Calculate the firm’s optimal choice of (x, y).

2. How do firm’s choices of x and y respond to marginal changes in p when p = 8, q = 2?

Solution. The FOC

πx = p− 3x2 + 4(y − 2x) = 0

πy = q − 2(y − 2x)
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Can verify that x = 2, y = 5 satisfies this when p = 8 and q = 2.

The Hessian of π with respect to (x, y)(
πxx πxy
πxy πyy

)
=

(
−6x− 8 4

4 −2

)
is positive definite everywhere, so the FOC yields the unique maximum on the domain x, y ≥ 0.

The rate of change of x∗ and y∗ with respect to p is given by(
∂x∗

∂p
∂y∗

∂p

)
= −H−1

(
πxp
πyp

)
The Hessian at p = 8, q = 2 is

H =

(
−20 4

4 −2

)
and its inverse is

H−1 = − 1

12

(
1 2

2 10

)
Hence, at p = 8, q = 2 (

∂x∗

∂p
∂y∗

∂p

)
=

1

12

(
1 2

2 10

)(
1

0

)
=

(
1/12

1/6

)
3

Example. A monopolist produces Q units of a good, at total cost c(Q). The price is then

P (Q), where P is the inverse demand function. Assume P ′ < 0, P ′′ ≤ 0, c′ ≥ 0, and c′′ ≥ 0.

1. What is the profit function? What is the FOC for an optimum Q∗? Is a point satisfying

the FOC necessarily an optimum?

2. Assume the FOC is satisfied. State, with justification, whether the following changes

increase or decrease the optimal Q∗:

(a) An everywhere increase in marginal cost

(b) A constant increase in the inverse demand function

(c) An everywhere decrease in P ′ (i.e. it becomes more negative), which keeps P (0)

fixed.

Solution.

1. Profit is π(Q) = QP (Q)− c(Q). Thus the first order condition is

π′(Q∗) = P (Q) +QP ′(Q)− c′(Q) = 0
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2. The second derivative is π′′(Q) = 2P ′(Q) +QP ′′(Q)− c′′(Q) < 0, so π is strictly concave,

and therefore a solution to the FOC give the unique maximiser.

3. Say an exonegous change increases π′(Q) at Q∗.

π′ is strictly decreasing in Q∗, therefore for the FOC to still hold, Q∗ must rise.

(Using the implicit function theorem: for any parameter α,

∂Q∗

∂α
= −πqα

πqq

Since πqq < 0, the sign of ∂Q∗

∂α
is the same as the sign of πqα, evaluated at Q∗.

(a) An everywhere increse in c′ leads to a decrease in

π′(Q∗) = P (Q) +QP ′(Q)− c′(Q)

Since π′ decreasing in Q, for the FOC to continue to be satisfies, Q∗ must decrease.

(b) A constant increase in P (Q) does not affect P ′(Q), and so increases π′(·).
For the FOC to continue to hold, Q∗ must increase.

(c) An everywhere decrease in P ′ which keeps P (0) fixed decreases P (·) and decreases

P ′(·), so decreases π′(cot).

Q∗ must decrease for the FOC to continue to hold.

3
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11 Equality-constrained optimisation

Suppose we have an objective function f : Rn → R, meaning we are interested in identifying

those x which maximise or minimise f . In most applications, we would have an additional

requirement that solutions to this optimisation problem satisfy some extra conditions. For

example, f might be a utility function, and we might require the solutions to also satisfy a

budget constraint. When the constraints that we impose on the solutions can be expressed via

equations (for example budget identities in the case of a standard consumer choice problem),

we refer to the problem as one of equality-constrained optimisation.

Say the constraints we want the solutions to satisfy are given by m ≤ n equations:

g1(x) = 0
...

gm(x) = 0

The constraint set is the set of points in Rn which satisfy these equations. Written

concisely:

C = {x ∈ Rn : g(x) = 0}

where g : Rn → Rm describe the constraints.

We refer to those point in C as feasible, that is, x is called feasible if it satisfies the

constraints specified for the optimisation problem.

11.1 Constraint Qualification

Now suppose a is a feasible point, i.e., g(a) = 0. If g satisfies a particular condition which we

will explain below, the set C of feasible points has an (n −m)-dimensional shape around the

point a. (Formally, there exists a small enough neighbourhood of a whose intersection with C

is an (n−m)-dimensional manifold.)

This condition, sometimes described as the constraints being locally linearly independent

around a is called the Constraint Qualification (CQ) at a. It requires each gi to be differentiable

at a, and the m vectors ∇g1(a), . . . ,∇gm(a) to be linearly independent.

In other words, CQ is satisfied at a ∈ C if the m× n matrix g1
1(a) . . . g1

n(a)
...

...

gm1 (a) . . . gmn (a)


has full rank m, where gji stands for the partial derivative of gj with respect to its ith variable.

Equivalently, the above matrix has an m×m submatrix with non-zero determinant. When

this condition holds, we will say that the Non Degenerate Constraint Qualification

(NDCQ) is satisfied. This is a mild condition, and when m < n, it is generically8 satisfied.

8The word “generically” has a technical definition which is beyond the material covered in these notes.

Roughly speaking, it captures the idea that if the functions gj are “randomly” picked according to some

natural notion of randomness, then “generically” means “with probability one”.
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In particular, for most economic applications it will hold. For example, when the constraints

g1 = · · · = gm = 0 are linear, the constraint qualification becomes an easy condition, and we

don’t even need to consider it.

11.2 Lagrange’s theorem

Given an objective function

f : Rn → R

and constraints
g1 : Rn → R
...

...

gm : Rn → R
g(x) = 0

the associated Lagrangian is a function from Rn+m to R defined as

L(x,λ) = f(x) +
m∑
j=1

λjg
j(x)

where λ = (λ1, . . . , λm) ∈ Rm is called the vector of Lagrange multipliers.

Note that if x is a feasible point (i.e., g(x) = 0), then L(x,λ) = f(x).

The idea behind the Lagrangian approach to optimisation is to study the behaviour of L

without any restrictions on x, instead of focusing on the behaviour of f on the constraint set.

So, instead of imposing g(x) = 0 to be satisfied, the objective function incorporates

marginal costs λ1, . . . , λm for violating the constraints g1 = 0, . . . , gm = 0, respectively. These

marginal costs are sometimes referred to as shadow prices.9

If x∗ is a local max of L and if it satisfies the constraint, then it is automatically a local

max of L on the constraint set. But, since L(x,λ) = f(x) for all x on the constraint set, x∗

is also a local max of f on the constraint. Clearly, the same argument applies for a local min.

So we have:

Lagrange’s theorem. Suppose x∗ is a local max or a local min of f subject to the m

equality constraints given by g(x) = 0. Suppose also f and each gi are differentiable at

x∗, and CQ is satisfied at x∗. Then there are numbers λ∗1, . . . , λ
∗
m such that

∂L(x∗,λ∗)

∂xi
= 0 for i = 1, . . . , n

∂L(x∗,λ∗)

∂λj
= 0 for j = 1, . . . ,m.

Note that the second row of equations above, i.e., the one involving the partial derivatives

with respect to λj is redundant, because the fact that x∗ is feasible implies ∂L
∂λj

(x∗,λ) = 0

9The cost-minimisation exercise in consumer/producer theory provides a intuitive interpretation for the

term shadow prices.
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for all λ. We wrote those m equations as part of the conclusion anyway, because in order to

solve for x∗ we will need to jointly solve the n equations coming from ∂L
∂xi

along with the m

feasibility equations (contraints).

11.3 Applying Lagrange’s theorem

The spirit of the Lagrangian methods is to convert a constrained optimisation problem into an

unconstrained optimisation problems, which in turn, reduces to the set of equations implied

by the FOC.

In order to solve a constrained optimisation problem with equality constraints:

1. Find all the solutions of the Lagrangian FOC which involves solving n+m equations in

n+m unknowns.

2. Verify whether NDCQ is satisfied everywhere (in most economic problems it is indeed

satisfied), and make a note of those points where NDCQ fails.

3. Evaluate the function at all those points you identified (solutions to the FOC set of

equations as well as the points where NDCQ fails), and thus find which ones are indeed

the global maxima/minima.

Many economic problems are nice as in maximising a quasiconcave function over a convex

set, and there will be only one solution of the FOC, which must be the global maximum.

Example. Consider the problem of

maximising xyz subject to the conditions x2 + y2 = 1 and x+ z = 1.

If we want this problem to look like the one we explained above, we can set f(x, y, z) = xyz

as the objective function, and represent the two equality constraints by setting the function

g : R3 → R2 to 0, where

g1(x, y, z) = x2 + y2 − 1

g2(x, y, z) = x+ z − 1

Hence, we can rewrite the problem as

max f(x, y, z) subject to g(x, y, z) = 0

In order to check NDCQ, we should look at the rank of the matrix

Dg (x, y, z) =

(
2x 2y 0

1 0 1

)
This has rank less than 2 only if x = y = 0. But x = y = 0 does not satisfy the first constraint

(which requires x2 + y2 = 1), so NDCQ holds on the whole constraint set. The Lagrangian is

L = xyz + λ1

(
1− x2 − y2

)
+ λ2 (1− x− z)
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FOC (which can be summarised as ∇L = 0) are

Lx = yz − 2λ1x− λ2 = 0

Ly = xz − 2λ1y = 0

Lz = xy − λ2 = 0

Lλ1 = 1− x2 − y2 = 0

Lλ2 = 1− x− z = 0

Using the second equation to find λ1 and λ2 in terms of x, y, z, and substituting these into the

first equation gives:

yz − 2

(
xz

2y

)
x− xy = 0

y2z − x2z − xy2 = 0

Using the fourth equation for y2 in terms of x2, and the last equation for z in terms of x gives:(
1− x2

)
(1− x)− x2 (1− x)− x

(
1− x2

)
= 0

(1− x) (1− x− 3x2) = 0

The solutions to this equation are x = 1, x = −1±
√

13
6

.

So we have five candidates, which are approximately:(
1 0 0

)(
.43 ±.90 .57

)(
−.77 ±.64 1.77

)
We know that a maximiser exists (Extreme Value Theorem) and every maximum (and min-

imum) must be among the five candidates above (Lagrange’s theorem). So the maximiser is(
−.77 −.64 1.77

)
.

11.4 The envelope theorem for constrained optimisation

Remember that the envelope theorem concerns how the optimised value changes with respect

to a parameter α ∈ R which is an exogenous variable in the sense that the problem faced by

the agent changes as this exogenous variable changes. When we use the word parameter (i.e.,

the exogenous variable) for α, we mean to distinguish this number from the agent’s choice

variables. For example α might be the temperature or the interest rate which can change from

one time to another, but the agent has no effect on this variable (hence it is exogenously given

to the agent).

Formally, denoting by x the agent’s choice variable, suppose the agent’s problem is

choose x to maximise f(x, α) subject to x ∈ C(α)

Note that in the above formulation, we allow both the objective function and the constraint

set to depend on the exogenous variable (i.e., the parameter) α. As α changes, the agent’s
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optimisation problem changes. As a result, the agent’s optimal choice, and therefore the

optimal value of the objective function will change. How does this optimal value vary with α?

We’ll assume two things about the problem:

• There is a unique maximiser x∗ (α) = arg max {f(x, α) | x ∈ C(α)} satisfying the FOC

• It is differentiable w.r.t. α

With the above assumptions, we rephrase the above question:

How does f(x∗ (α) , α) change as α changes?

For notational simplicity, the optimal value for parameter α is often denoted by v(α) and

v(·) is called the agent’s value function. Note that the agent’s choice variable does not feature

as a variable of this function, because this being the optimal value really means that the choice

is actually determined (of course optimally) for every given α. At the risk of repeating ourselves,

we can rewrite v(·) as

v(α) = max
x
{f(x, α) | x ∈ C(α)} = f(x∗(α))

To make it even more concrete, suppose we have a constrained optimisation problem:

max f(x, α) subject to g1(x, α) = · · · = gm(x, α) = 0. The associated Lagrangian is

L(x1, . . . , xn, λ1, . . . , λm, α) = f(x, α) +
m∑
j=1

λjg
j(x, α),

Given α, if x∗(α) is a solution to the above constrained optimisation problem, then by La-

grange’s theorem, there must exist λ∗(α) such that (x∗(α),λ∗(α)) satisfies the Lagrangian

FOC.

We might remember from our discussion of the envelope theorem for unconstrained optimi-

sation (i.e., in the absence of constraints gi = 0) that changing α marginally has zero indirect

effect (captured by
∑ ∂f

∂xi

∂x∗i
∂α

) on the optimised value due to ∂f
∂xi

being zero at the optimal

solution. These partial derivatives are not necessarily zero any more, because the FOC is

satisfied for the Lagrangian function L(x,λ), not for he objective function f . However, we

can take advantage of the fact that x∗ being a solution implies g(x∗) is zero. (After all, we

were searching for a point which satisfied the constraints.) More generally, for every x which

satisfies the constraint g(x), and for every λ, we have f(x, α) = L(x,λ, α). But then

v(α) = f(x∗(α), α) = L(x∗(α),λ∗(α), α)

Now, differentiating the above equation with respect to α:

v′(α) =
n∑
i=1

∂L

∂xi

dx∗i
dα

+
m∑
i=j

∂L

∂λj

dλ∗j
dα

+
∂L

∂α

dα

dα

∣∣∣∣∣
x=x∗(α), λ=λ∗(α)

Since we know that (x∗(α),λ∗(α)) solves the FOC for L(x,λ, α), we have

∂L

∂xi
=

∂L

∂λj
= 0

∣∣∣∣
x=x∗(α), λ=λ∗(α)

for all i = 1, . . . , n and j = 1, . . . ,m

Finally, noting that dα
dα

= 1, we can conclude
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The envelope theorem. If the maximiser x∗(α) is differentiable, then:

dv

dα
=

∂L

∂α

∣∣∣∣
x=x∗(α), λ=λ∗(α)

Written in plain words:

The rate of change of the optimal value

with respect to the exogenous parameter
=

The rate of change of the Lagrangian

with respect to the parameter,

evaluated at the optimal solution

If there are multiple parameters α1, α2, . . . , then work with ∂
∂αi

instead of d
dα

.

Applications to consumer choice

Some key results of consumer theory can be obtained by using the envelope theorem.

The standard choice problem in consumer theory is nothing but maximising a utility func-

tion subject to a budget constraint and nonnegativity constraints.

maxu(x) s.t. p · x ≤ m and xi ≥ 0 for all i = 1, . . . , n

Assume increasing u, so the optimal solution involves spending all of m. That is, the

budget constraint binds. For simplicity, let us also assume that the preferences are such that

the consumer would always choose positive amounts of each good (which, for example, is the

case for Cobb-Douglas agents). So the problem can be rewritten as

maxu(x) s.t. p · x = m and xi > 0 for all i = 1, . . . , n

Finally, assume that given any m and p, there is a unique solution to this problem (which, for

example, is the case for strictly quasi-convex preferences).

The Marshallian demand function xM(p,m) maps given prices and budget to the unique

solution of the consumer’s problem.

The value function v(p,m) for this problem is called the indirect utility function. It basically

maps given prices and budget to the maximum utility the consumer can achieve:

v(p,m) = u(xM(p,m))

Since the non-negativity constraints do not bind (i.e., we know xi > 0 for all i), the

associated Lagrangian is

L = u(x) + λ(m−
∑

pixi)

Assuming differentiability of the demand function, the envelope theorem says

∂v

∂pi
=

∂L

∂pi

∣∣∣∣
x=xM (p,m), λ=λ∗

= −λ∗xMi

and
∂v

∂m
=

∂L

∂m

∣∣∣∣
x=xM (p,m), λ=λ∗

= λ∗

Dividing the first equation by the second equation gives us the so-called
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Roy’s identity: xMi = −
∂v
∂pi
∂v
∂m

Now, let’s turn the problem of cost minimisation whose solution is referred to as the Hicksian

(or compensated) demand. Again, let us assume that given a utility level ū (i.e., an indifference

curve) and a price vector p, there is a unique cheapest bundle which achieves utility ū. That

is, the problem

minp · x subject to u(x) ≥ ū and xi ≥ 0

has a unique solution which we denote by xH(p, ū).

The value function for this problem is called the expenditure function

e(p, ū) = p · xH(p, ū)

Increasing utility implies the constraint u(x) ≥ ū binds. Positive consumption of each

good assumption means the non-negativity constraints do not bind, and therefore the relevant

Lagrangian is

L(x, µ,p, ū) = p · x+ µ(ū− u(x))

Assuming xH is differentiable, we can apply the envelope theorem to conclude

Shephard’s lemma:
∂e

∂pi
=

∂L

∂pi

∣∣∣∣
x=xH(p,ū), µ=µ∗

= xHi

and
∂e

∂ū
=

∂L

∂ū

∣∣∣∣
x=xH(p,ū), µ=µ∗

= µ∗

Note that the two optimisation exercises above are dual problems of each other in the sense

that given prices and a utility level, if we compute the cheapest bundle achieving that utility

(i.e., xH(p, ū)), and then treat the cost of that bundle as a monetary budget (i.e., setting

m = e(p, ū)), and then compute the most preferred bundle (i.e., xMi (p, e(p, ū))) then we must

necessarily have the same bundle. That is:

xHi (p, ū) = xMi (p, e(p, ū)) (♥)

Alternatively, starting with the Marshallian exercise, we can conclude

xMi (p,m) = xHi (p, v(p,m))

Using the Chain Rule to differentiate (♥) with respect to pj gives

∂xHi
∂pj

=
∂xMi
∂pj

+
∂xMi
∂m

∂e

∂pj

Since Shephard’s lemma gives ∂e
∂pj

= xHj , subbing this into the above equation and rearranging

yields the so-called
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Slutsky equation:
∂xMi
∂pj

=
∂xHi
∂pj
− ∂xMi

∂m
xHj

Shadow prices

Consider the following “cost minimisation problem”

min
x
C(x) subject to


g1(x) = d1

...

gm(x) = dm

Once again, for the minimisation problem, x1, . . . , xn are the choice variables, whereas

the parameters d1, . . . , dm are exogenously given and treated as fixed constants. As these

parameters change, the problem changes, and as a result the solution x∗(d1, . . . , dm) and the

optimal achieved value v(d1, . . . , dm) = C(x∗(d1, . . . , dm)) of the problem will change. For

example in the Marshallian demand example above, there is a single constraint which is the

budget identity and the exogenous parameter is the income. As the income changes, the

consumer’s budget set and choices will change. In the case of Hicksian demand, the single

constraint is achieving the utility target. As this target changes, the consumer’s cost-minising

choices (and therefore expenditure) will change.

The Lagrangian for the above problem is:

L = c(x) +
m∑
i=1

λi
[
di − gi(x)

]
By the envelope theorem:

∂v

∂di
=

∂L

∂di

∣∣∣∣
x=x∗, λ=λ∗

= λ∗i

In words, we can interpret λ∗i as the “unit cost associated with increasing the parameter

di”. This is because a marginal increase of δ in di leads to an increase of λ∗i∆ in the optimal

value of c. For example if gi is a production function, and therefore gi(x) = di describes a

production target, then λ∗i is the “shadow price” of producing one extra unit.

11.5 Second Order Conditions for Constrained Optimisation

When the critical points identified in our optimisation problem are interior points of the domain

of the objective function, the second order conditions expressed via the Hessian matrix can be

used to classify these critical points.

In many contrained optimisation problem, however, the points of interest are typically

on the boundary. The relevant second order conditions, in that case, require the use of the

so-called Bordered Hessian.

Suppose we are given the problem

max
x∈Rn

f(x) subject to g1(x) = g2(x) = · · · = gm(x) = 0

83



That is, a problem with n choice variables and m constraints which lead to the Lagrangian

L = f(x) +
m∑
i=1

λig
i(x)

Let (x∗,λ∗) be such that the n+m first order conditions for L hold:

∂L

∂x1

= · · · = ∂L

∂xn
= 0,

∂L

∂λ1

= · · · = ∂L

∂λm
= 0 at (x∗, λ∗)

Now, consider the Hessian matrix of the Lagrangian at (x∗, λ∗), i.e.,

D2L(x∗, λ∗) =



0 · · · 0 | − ∂g1

∂x1
· · · − ∂g1

∂xn
...

. . .
... | ...

. . .
...

0 · · · 0 | −∂gm

∂x1
· · · −∂gm

∂xn

−− −− −− −− −− −− −−
− ∂g1

∂x1
· · · −∂gm

∂x1
| ∂2L

∂x21
· · · ∂2L

∂xn∂x1
...

. . .
... | ...

. . .
...

− ∂g1

∂xn
· · · −∂gm

∂xn
| ∂2L

∂x1∂xn
· · · ∂2L

∂x2n


evaluated at (x∗,λ∗)

Given the above optimisation problem, its Bordered Hessian matrix is obtained by mul-

tiplying each of the last m rows and first m columns of D2L(x∗, λ∗) by −1 to obtain

BH =



0 · · · 0 | ∂g1

∂x1
· · · ∂g1

∂xn
...

. . .
... | ...

. . .
...

0 · · · 0 | ∂gm

∂x1
· · · ∂gm

∂xn

−− −− −− −− −− −− −−
∂g1

∂x1
· · · −∂gm

∂x1
| ∂2L

∂x21
· · · ∂2L

∂xn∂x1
...

. . .
... | ...

. . .
...

∂g1

∂xn
· · · ∂gm

∂xn
| ∂2L

∂x1∂xn
· · · ∂2L

∂x2n


evaluated at (x∗,λ∗)

SOC via the Bordered Hessian.

(a) If the last n− k leading principal minors of BH at (x∗,λ∗) alternate in sign, where

the determinant of BH (i.e., the final leading principal minor) is of the same sign as

(−1)n, then x∗) is a local maximum of f(x) subject to g(x) = 0.

(b) If the last n − k leading principal minors of BH at (x∗,λ∗) are of the same sign as

(−1)m, then x∗ is a local minimum of f(x) subject to g(x) = 0.

(c) If both conditions (a) and (b) are violated by nonzero leading principal minors, then

x∗ is neither a local max nor a local min of f(x) subject to g(x) = 0.
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12 Optimisation with inequality constraints

An optimisation problem with m inequality constraints looks like

max f(x) subject to gj(x) ≥ 0, j = 1 . . .m

where f : Rn → R is the objective function, and gj(x) ≥ 0 is the jth constraint for j = 1, . . . ,m.

If x∗ is a solution to this problem such that gj(x) > 0, then we say “for this particular

solution x, the jth constraint does not bind.”

12.1 When none of the constraints bind

If x∗ is a solution to the above problem such that none of the constraints bind (i.e., gj(x) > 0

for all j = 1, . . . ,m), then we say x∗ is an interior solution. All such solutions must satisfy the

standard the FOC for interior optima:

FOC for interior optima. Suppose x∗ ∈ Rn is a local max or a local min of a function

f whose constraint set is C ⊆ Rn. Assume also that x∗ in an interior point, that is, there

exists a ball centred at x∗ all of which is contained in C. If f is differentiable at x∗, then

∂f

∂xi
(x∗1, . . . , x

∗
n) = 0 for all i.

Not knowing beforehand whether the constraints will bind or not, we need to develop a

method to think about how to find solutions for which some of the constraints bind. We begin

with some special cases.

12.2 Complementary slackness for a nonnegativity constraint in 1

dimension

We first look at a special case of inequality constraints, namely the so-called nonnegativity

constraints which require some (or all) of the choice variables to be nonnegative.

There is a strict local maximum at x∗ = 0, where the x ≥ 0 constraint binds. That means,

if we were allowed to violate the constraint to let x move below 0, we would obtain a higher

value than f(0), at least on the margin. This is because f ′(0) < 0.

The nonnegativity constraint requires us to write the FOC for local maxima more carefully:

x∗ > 0 and f ′(x∗) = 0︸ ︷︷ ︸
for an interior local max

, or x∗ = 0 and f ′(x∗) ≤ 0︸ ︷︷ ︸
for a local max where the x ≥ 0 constraint binds

Alternatively, we can write these (more compact but less practical) as

x∗ ≥ 0, f ′(x∗) ≤ 0, x∗f ′(x∗) = 0

The last requirement, namely x∗f ′(x∗) = 0 is called the complementary slackness con-

dition. It basically says that if one of the first two requirements holds as a strict inequality (is

85



𝑓 

𝑥 0 𝑎 𝑐 𝑑 𝑏 

Figure 6: An objective function with nonnegativity constraint.

slack), then the other must hold as an equality (bind). Note that it is possible for both of the

first two requirements to bind.

12.3 Complementary slackness for nonnegativity constraints in n

dimensions

It is not hard to generalise the above FOC to the case of multi-variable optimisation with

nonnegativity constraints.

The FOC for a local max. If x∗ ∈ Rn is a local max of a differentiable f subject to

x ≥ 0, then for each i = 1, . . . , n,[
x∗i > 0 and

∂f

∂xi
(x∗) = 0

]
or

[
x∗i = 0 and

∂f

∂xi
(x∗) ≤ 0

]

The FOC for a local min. If x∗ ∈ Rn is a local min of a differentiable f subject to

x ≥ 0, then for each i = 1, . . . , n,[
x∗i > 0 and

∂f

∂xi
(x∗) = 0

]
or

[
x∗i = 0 and

∂f

∂xi
(x∗) ≥ 0

]
In our search for local optima we need to check all possible combinations in which the

nonnegativity constraints can bind. For example in 2 dimensions, suppose we have the two

constraints: x1 ≥ 0 and x2 ≥ 0. At the optimal solution, there are four possibilities: neither

constraint binding, or only the first constraint binding, or only the second constraint binding,

or both constraints binding. In our search for the optimal solution, we need to examine each

case:

• Test for an interior solution, i.e., x1 > 0, x2 > 0. We have two equations f1 = f2 = 0.

See if these have a solution with x1 > 0, x2 > 0.

86



• Test x1 = 0, x2 > 0. We have one equation f2 = 0 in one unknown x2. See if it has a

solution with x2 > 0, and see if this satisfies the requirement f1 ≤ 0.

• Test x1 > 0, x2 = 0. Similarly to the case above.

• Test x1 = x2 = 0. Test (0, 0) to see if f1 ≤ 0 and f2 ≤ 0 there.

In general with n-variables all of which are required to be nonnegative, we will have 2n

different cases.

12.4 Single variable optimisation with one inequality constraint

Now we turn to inequality constraints that are more general than nonnegativity constraints.

In order to explain the basic principle, let’s begin with n = 1 and a single constraint. To be

concrete, suppose we are maximising u(x) : R→ R subject to x ≤ 1.

Suppose x∗ is a local max of u subject to x ≤ 1. If the constraint doesn’t bind for this local

max, that is, if x∗ < 1, then the usual FOC holds, because we can move around x∗ without

hitting the constraint. The fact that x∗ is a local max then implies u′(x∗) = 0.

If, however, x∗ = 1, then the constraint binds, and this point might be a local max even

though the derivative at this point is non-zero. In particular, perhaps u would increase if we

could push x∗ beyond 1, but we can’t due to the constraint x ≤ 1. If that’s the case, we would

expect u′(1) > 0. Unlike the nonnegativity constraints, we don’t always have a compact way

to write the conditions for the solutions for which the constraints bind. So, we will treat them

within the more general Lagrangian approach.

So, for the above example, we will convert the 1-variable optimisation problem with 1

constraint into a 2-variable unconstrained optimisation problem. Namely we will study the

Lagrangian

L(x, λ) = u(x) + λ(1− x)

Around the point where the constraint binds (i.e., around x = 1) the maximiser’s instinct is

to raise x beyond 1. Instead of imposing the constraint x ≤ 1, the Lagrangian function allows

x to be greater 1, but incorporates a shadow price of λ for x going above 1.

And the spirit of the Lagrangian approach is about identifying the correct shadow price λ∗

(Lagrangian multiplier) which ensures that a critical point x∗ of u subject to the constraint

corresponds to a critical point (x∗, λ∗) of L.

A solution x∗ < 1 is simply an interior solution, and can be identified by checking the FOC

for u(x). That, of course, corresponds to the solution of the first order condition Lx = 0 for

the Lagrangian L = u(x) + λ(1 − x), where λ∗ = 0. The constraint does not bind, and the

“shadow price of relaxing the constraint is 0”. (No need to pay for relaxing a constraint which

does not bind.)

If, however, x∗ = 1 is a solution, then the constraint binds, and allowing for x > 1, that is,

relaxing the constraint can yield a bigger value of u. That means there will be a shadow price

λ∗ ≥ 0 to relax the constraint. In other words, the solution x∗ = 1 satisfies the Lagrangian

FOC Lx = 0 with some λ∗ ≥ 0.
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To summarise, the problem maxu(x) s.t. x ≤ 1 can be solved by setting L(x, λ) = u(x) +

λ(1− x), and considering both cases below:

• Solve Lx = 0 with λ∗ = 0, and see if this gives any x∗ < 1.

• Set x∗ = 1, and see if Lx = 0 is met for some λ∗ ≥ 0.

12.5 Inequality constraints with multiple variables

For ease of exposition, let’s first discuss the case of a single constraint.

Single constraint

Suppose f : Rn → R is a differentiable function. Consider the problem

max f(x) subject to g(x) ≥ 0

Assume also that g is differentiable, and that NDCQ is satisfied for those x where the con-

straint binds. That is, we also assume that if g(x) = c, then∇g(x) = (g1(x), g2(x), . . . , gn(x)) 6=
0.

The Lagrangian L : Rn+1 → R is given by

L(x, λ) = f(x) + λg(x)

If x∗ is a solution, then there exists λ∗ such that

• First Order Conditions for x hold: ∂L
∂xi

(x∗, λ∗) = 0 for each i = 1, . . . , n,

• Complementary Slackness condition holds:

g(x∗) > 0 and λ∗ = 0︸ ︷︷ ︸
the constraint not binding

or g(x∗) = 0 and λ∗ ≥ 0︸ ︷︷ ︸
the constraint binding

Multiple constraints

Given a differentiable f : Rn → R, consider the problem

max f(x) subject to gj(x) ≥ 0, j = 1, . . . ,m

The Lagrangian is the same as for equality constraints:

L(x,λ) = f(x) +
m∑
j=1

λjg
j(x)

Assume that gj is differentiable for each j = 1, . . . ,m.
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Assume also that NDCQ is satisfied, that is, given a feasible point x, if J is the set

{j | gj(x) = 0}, then the set of vectors {∇gj(x) | j ∈ J} is linearly independent.10

If x∗ is a solution to our problem, then there must exist λ∗ = (λ∗1, . . . , λ
∗
m) such that

• First Order Conditions for x hold: ∂L
∂xi

(x∗) = 0 for each i = 1, . . . , n,

• Complementary Slackness condition holds for each j = 1, . . . ,m:

gj(x∗) > 0 and λj = 0︸ ︷︷ ︸
th jth constraint not binding

or gj(x∗) = 0 and λj ≥ 0︸ ︷︷ ︸
the jth constraint binding

It is worth noting that the envelope theorem continues to hold. That is, suppose the

problem evolves (in a differentiable way) with an exogenous parameter α. Denoting by v the

value function
dv

dα
=

∂L

∂α

∣∣∣∣
x=x∗, λ=λ∗

An example: different borrowing and saving rates

Suppose a consumer has income y1 = 1 in period 1, and y2 = 1 in period 2. She can save at

rate rs = 1 and borrow at rate rb = 2, meaning if she saves a pound in period 1, she has an

extra pound in period 2, whereas if she borrows a pound in period 1, she needs to pay back 2

pounds in period 2.

Denoting by ci her consumption in period i, her preferences over consumption streams

(c1, c2) are described by a utility function:

U (c1, c2) = ln (c1) + δ ln (c2) ,

where 0 ≤ δ ≤ 1.

First note that both c1 and c2 have to be positive for U to be well-defined.

Her consumption possibility set is depicted in Figure 7.

The problem is

max
c1,c2

U (c1, c2) s.t.


c1 ≤ 1 + 1−c2

2

c2 ≤ 1 + 1− c1

c1 > 0

c2 > 0

Since c1 > 0 and c2 > 0 are strict inequalities, these constraints cannot bind, and therefore

will not feature in the Lagrangian. So the Lagrangian for the above problem is

L = U (c1, c2) + λb (3− 2c1 − c2) + λs (2− c1 − c2)

The FOC for c1 and c2:

Lc1 = 0 =
1

c1

− λs − 2λb (2)

Lc2 = 0 = δ
1

c2

− λs − λb (3)

10It is worth noting that NDCQ is a mild condition, and in most applications it won’t be hard to verify,

without having to resort to tedious machinery, that it holds.
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Figure 7: Different borrowing and saving rates

And complementary slackness:

• Saving constraint binds, and λs ≥ 0, or

• Borrowing constraint binds, and λb ≥ 0, or

• Both constraints bind, and λs ≥ 0 and λb ≥ 0.

Case 1: Money is being saved

Saving constraint binds (c1 + c2 = 2, λs ≥ 0), borrowing does not (c1 < y1, λb = 0).

Solve the equalities: putting λb = 0 into 2 and 3 gives λs = δ
c2

= 1
c1

(≥ 0), i.e. rs = c2
c1

Solving this and the binding saving constraint gives (c1, c2) =
(

2
(1+δ)

, 2
1+δ

δ
)

.

λs ≥ 0 is satisfied, and we also need c1 < 1 (non-binding borrowing constraint), but this is

not possible since δ ≤ 1.

Case 2: Money is being borrowed

Borrowing constraint binds (2c1 + c2 = 3, λb ≥ 0), saving does not (c1 > y1, λs = 0)

Similarly to above, there is solution (c1, c2) =
(

3
2(1+δ)

, 3
1+δ

δ
)

which has c1 > y1 when δ < 1
2
.

(λb = 1+δ
3
≥ 0)

Case 3: Neither borrower nor lender

(c1, c2) = (1, 1) (both constraints bind) and λb, λs ≥ 0.

Plug these into FOC for c1 and c2 to obtain

1− λs − 2λb = 0

δ − λs − λb = 0
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which yield λs = 2δ − 1 and λb = 1− δ.

The requirement for λs, λb ≥ 0 is 1
2
≤ δ.

Thus we have the solution:

(c1, c2) =


(

3
2(1+δ)

, δ 3
(1+δ)

)
if 0 ≤ δ < 1

2

(1, 1) if 1
2
≤ δ ≤ 1

12.6 A special case: the Kuhn-Tucker Lagrangian

Suppose some of the inequality constraints are non-negativity constraints. Like we discussed

at the very beginning of this chapter, the simpler nature of the non-negativity constraints can

allow us to also simplify the Lagrangian function we will employ.

Take, for example, a common economic problem where we are given utility function u :

Rn → R and we are asked to solve

max f(x) subject to g(x) ≤ c and xi ≥ 0 for all i = 1, . . . , n. (?)

We can, of course, solve this using the standard Lagrangian method. Denoting by λ the

multiplier for the first constraint, and by µi the multiplier for the constraint −xi ≤ 0, we have

a total of n+ 1 multipliers, and the associated Lagrangian function

L(x, λ,µ) = f(x) + λ(c− g(x)) +
n∑
i=1

µixi

Note that for the multipliers µi, we know that at the optimal solution (and all local maxima),

we will necessarily have for each i = 1, . . . , n:

• µi ≥ 0, and

• µi = 0 or xi = 0.

This simple nature of the multipliers associated with the nonnegativity constraints allows us

to work instead with the so-called Kuhn-Tucker Lagrangian which does not feature the

nonnegativity constraints at all:

L(x, λ) = f(x) + λ(c− g(x))

The first order conditions for L are different from those of L, because

Lxi = Lxi − µi ≤ 0

We will first treat the problem via the standard Lagrangian approach. Then using the FOC

for the standard Lagrangian, we will derive the equivalent FOC for the KT-Lagrangian.
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Remember that

The standard Lagrangian FOC for the problem (?) are:

(a) For each i = 1, . . . , n:

x∗i > 0 and µ∗i = 0 or x∗i = 0 and µ∗i ≥ 0

(b)

g(x∗) < c and λ∗ = 0 or g(x∗) = c and λ∗ ≥ 0

Now note that

x∗i > 0 and µ∗i = 0 =⇒ ∂L
∂xi

(x∗) = 0

x∗i = 0 and µ∗i ≥ 0 =⇒ ∂L
∂xi

(x∗) ≤ 0

Therefore

So the KT-Lagrangian FOC for the problem (?) are:

(a) For each i = 1, . . . , n:

x∗i > 0 and ∂L
∂xi

(x∗) = 0 or x∗i = 0 and ∂L
∂xi

(x∗) ≤ 0

(b)

g(x∗) < c and λ∗ = 0 or g(x∗) = c and λ∗ ≥ 0

Finally, the envelope theorem continues to hold for the KT-Lagrangian, because L = L at

the optimal solution (can you see why?), and we know from before that the envelope theorem

holds for the standard Lagrangian L:

dv

dα
=

∂L

∂α

∣∣∣∣
x=x∗, λ=λ∗, µ=µ∗

=
∂L
∂α

∣∣∣∣
x=x∗, λ=λ∗

An example using the KT-Lagrangian

Consider the choice problem of a consumer with preferences u(x1, x2) = (x1+1)x2 and monetary

budget w. He problem can be summarised as

max
x1,x2

(x1 + 1)x2 s.t.


p1x1 + p2x2 ≤ w,

x1 ≥ 0,

x2 ≥ 0

The associated KT-Lagrangian is

L = (x1 + 1)x2 + λ(w − p1x1 − p2x2)
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Figure 8: A solution with x1 ≥ 0 binding.

and the related first order conditions will be as follows:

Clearly the budget constraint will be met with equality, so Lλ = w − p1x1 − p2x2 = 0 and

λ∗ ≥ 0.

Suppose the constraint x1 ≥ 0 binds, i.e., x∗1 = 0. Then x∗2 = w
p2
> 0. We have to check:

Lx1 = x2 − λp1 ≤ 0 and Lx2 = x1 + 1 − λp2 = 1 − λp2 = 0 (with λ ≥ 0). The last equation

gives λ∗ = 1
p2

, so we have x∗2 − λp1 = w
p2
− 1

p2
p1. This is ≤ 0 when p1 ≥ w.

This gives (0, w
p2

) as a solution when p1 ≥ w.

Suppose the constraint x2 ≥ 0 binds, i.e., x∗2 = 0. But this leads to a utility of 0, and

therefore cannot be a solution.

Suppose neither nonnegativity constraint binds, i.e., Case x∗1, x
∗
2 > 0. Then we require

Lx1 = Lx2 = 0. So x2 − λp1 = x1 + 1 − λp2 = 0. This gives λ = x2
p1

= x1+1
p2

. So the

budget constraint gives p1x1 + p1 (x1 + 1) = w, so 2x1p1 = w − p1. So x1 = w−p1
2p1

and

x2 = 1
p2

[
w − w−p1

2

]
= w+p1

2p2
. The condition for x1, x2 > 0 is w > p1.

This gives
(
w−p1
2p1

, w+p1
2p2

)
as a solution when w > p1.

So we have solution: (x∗1, x
∗
2) =

(
0, w

p2

)
when p1 ≥ w, and

(
w−p1
2p1

, w+p1
2p2

)
when w > p1.

Another example using the KT-Lagrangian

A firm has total revenue R = 10Q − Q2 + A/2 where Q is its output and A is its advertising

expenditure. Its total costs are C = Q2/2+5Q+1+A. The managers of the firm wish to choose

Q and A to maximise total revenue subject to a minimum profit constraint, π = R− C ≥ π0,

and A ≥ 0.

1. Comment on the role of advertising. Why will the π ≥ π0 constraint bind?
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2. Find the Q and A satisfying the Lagrangian FONCs for optimality when π0 = 3. Have

these necessary conditions found the true optimum?

3. Find ∂R∗

∂π0
at π0 = 3.

Solution.

1. The profit constraint is π = R− C ≥ π0, i.e.:

10Q−Q2 +
A

2
−
(
Q2

2
+ 5Q+ 1 + A

)
≥ π0

or 5Q− 3Q2

2
− A

2
− 1 ≥ π0

Note that this constraint must bind in the optimal solution, because if it didn’t, we could

increase A which would then increase R.

2. The KT-Lagrangian does not feature the nonnegativity constraints A ≥ 0 and Q ≥ 0:

L(Q,A, λ) = 10Q−Q2 +
A

2
+ λ

(
−π0 −

3Q2

2
+ 5Q− A

2
− 1

)
KT first order conditions for a maximum are:

• LQ = 10− 2Q− 3λQ+ 5λ = 0

• Either A∗ = 0 and LA = 1
2
− λ

2
≤ 0, or A∗ > 0 and 1

2
− λ∗

2
= 0

That is: either A∗ = 0 and λ∗ ≥ 1, or A∗ > 0 and λ∗ = 1

• Lλ = 0, i.e., 5Q− 3Q2

2
− A

2
− 1 = π0 at (A,Q) = (A∗, Q∗).

If A∗ > 0 is part of a solution, then λ∗ = 1, so LQ = 15 − 5Q = 0, so Q∗ = 3. So

π0 = 3 = 5Q− 3Q2

2
− A

2
− 1 = 1−A

2
, so A = −5. Hence there cannot be a solution with

A∗ > 0.

If there is solution with A∗ = 0, then π0 = 3 = 5Q − 3Q2

2
− 1, so 4 = 5Q − 3Q2

2
,which

solves to give Q = 2 or Q = 4
3
.

Then LQ = 0 gives λ = 10−2Q
3Q−5

, which for Q = 2 gives λ = 6, and for Q = 4
3

gives λ = −22
3

.

Only the first has λ ≥ 0 as required, so must have Q = 2.

Then LA = 1
2
− λ

2
= −5

2
≤ 0 as required.

So the FOC is solved uniquely by A∗ = 0, Q∗ = 2 and λ∗ = 6.

This solution (A,Q, λ) = (0, 2, 6) of the FOC must be the global maximum since the

objective function is concave (verify via the Hessian) and the constraint set is a convex

set (verify by drawing the graph of 5Q− 3Q2

2
− A

2
− 1 = π0 in the Q-A coordinate plane).

3. Finally, the envelope theorem yields:

∂R

∂π0

=
∂L
∂π0

∣∣∣∣
(A∗,Q∗,λ∗)

= −λ∗ = −6

3
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