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1 Probability theory and statistics

1.1 Elements of probability theory

1.1.1 Definition of probability

To define probability it is useful to think in terms of experiments. We know
that each experiment has an outcome (denoted by ω); however, this outcome
cannot be known a priori, so that it is uncertain: therefore the experiment
is called a random experiment. The set of all possible outcomes Ω will be
referred to as the sample space.

Example 1 Suppose we toss a coin twice; we have four possible mutually
exclusive outcomes

ω1 = (H,H) ω2 = (H,T ) ω3 = (T,H) ω4 = (T, T )

while the set Ω is

Ω = {(H,H) , (H,T ) , (T,H) , (T, T )}

Now, given the experiment, we can invent a measure of how rare or sur-
prising its various possible outcomes are. We will refer to this measure as

∗Please report any typos or mistakes to dr10011@cam.ac.uk.
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probability. An event A ⊆ Ω is a set of distinct outcomes. Intuitively prob-
ability of the event A can be thought of as a frequency of outcomes leading
to A.

Example 2 Continuing the coin toss example, denote

A1 = {∅} A2 = {(H,H) , (H,T )} A3 = {(T,H) , (T, T )}

so that Ai ∩ Aj = ∅, i, j = 1, 2, 3, i 6= j. Then

Pr [A1 ∪ A2 ∪ A3] = Pr [Ω] = 1

= Pr [A1] + Pr [A2] + Pr [A3] .

We can now introduce the following result:

Proposition 1 (The additive law) Let A1 and A2 be any two events.
Then1

Pr [A1 ∪ A2] = Pr [A1] + Pr [A2]− Pr [A1 ∩ A2] .

We say that two events are mutually exclusive if they cannot both occur
at the same time, i.e., mutually exclusive events A1 and A2 have property
that Pr [A1 ∩ A2] = 0.

1.1.2 Conditional probability

Having defined what we mean by probability we can now introduce a further
concept. In particular we will consider situations where events have an effect
on each other. To understand what we mean, consider the following example.

Example 3 For a single toss of a fair dice Pr [6] = 1
6
, while Pr [even number] =

1
2
. However, the probability of the outcome being 6 knowing that the outcome

is an even number is Pr [6 |even number ] = 1
3
. Therefore the probability of a

six has changed once we have the information that an even number has oc-
curred. The effect of the information is to reduce the set of possible outcomes
from {1, 2, 3, 4, 5, 6} to {2, 4, 6}.

1Note that drawing a Venn diagram helps understanding this law.
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Definition 1 (Conditional probability) Consider two events A and B.
The probability of event A given event B is equal to the probability of A and
B divided by the probability of B:

Pr [A |B ] =
Pr [A ∩B]

Pr [B]
.

Consider now a situation where knowing that an event B has happened
does not provide any information about the occurrence of event A; formally

Pr [A |B ] = Pr [A]⇒ Pr [A ∩B] = Pr [A |B ] Pr [B] = Pr [A] Pr [B] .

Definition 2 (Independence) Two events A and B are said to be inde-
pendent if

Pr [A ∩B] = Pr [A] Pr [B] .

One of the most useful results of conditional probability is Bayes’ Rule,
which is extensively used in Game Theory.

Proposition 2 (Bayes’ Rule) Suppose that Ω = A1 ∪ . . . ∪ An, with Ai
disjoint, Pr [Ai] > 0, ∀i = 1, . . . , n . Then for any event B such that Pr [B] >
0

Pr [Ai |B ] =
Pr [Ai ∩B]

Pr [B]
=

Pr [Ai] Pr [B |Ai ]∑n
j=1 Pr [Aj] Pr [B |Aj ]

.

1.2 Random Variables

1.2.1 A random variable

So far we have defined the outcome of a random experiment ω and the set of
possible outcomes Ω. In order to make the outcomes of random experiments
somehow tractable we need to assign a numerical value to each of them. This
is done by introducing the concept of random variable.

Definition 3 (Random variable) A random variable X is a function
that assigns a real number to each element of the sample space Ω:

X : Ω→ R.
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By convention we denote by X the random variable itself, and by x the
actual realisation of the random variable X, that is

x = X (ω) .

Example 4 In the coin toss example, a toss can be classified as either a
success (denoted by 1) or a failure (denoted by 0). For each toss Ω = {H,T}
we can define the following random variable

X ({H}) = 1

X ({T}) = 0.

Random variables are classified as either discrete or continuous, depend-
ing on the set of values they can take.

1.2.2 Discrete Random Variables

Definition 4 (Discrete random variable) A random variable X is said
to be discrete if it takes values in a countable subset of R (typically N or a
subset of it).

In order to compute probabilities of events, a discrete random variable can
be directly characterised in terms of a function called probability distribution.

Definition 5 Consider a discrete random variable X. A probability mass
function is a function that links each value the random variable X can take
to the corresponding probability. Formally, denoting by pX(·) the probability
mass function of the discrete random variable X taking values in the set
{x1, x2, . . .}, then

pX (x) = Pr [X = x] .

Example 5 In the coin toss example, if we define Pr [X = 1] = π then

pX (x) = πx (1− π)1−x x = 0, 1

A probability mass function satisfies the following properties:

1. pX (x) ≥ 0 for all x.

2.
∑∞

i=1 pX (xi) = 1.
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Another useful concept is that of cumulative distribution function (cdf), usu-
ally denoted by FX(). It is equivalent to that of probability mass function
so it can be used as an alternative way to define a random variable.

Definition 6 Consider a discrete random variable X taking values in the
set {x1, x2, . . .}; the cumulative distribution function is defined as

FX (x) = Pr [X ≤ x] =
∑
a≤x

pX (a) .

The cdf of a discrete random variable satisfies the following properties:

1. limx→−∞ FX (x) = 0.

2. limx→∞ FX (x) = 1.

3. If x1 > x2 then FX (x1) ≥ FX (x2).

4. p (xh) = FX (xh)− FX (xh−1). This is because

FX (xh)− FX (xh−1) =
h∑
i=1

pX (xi)−
h−1∑
i=1

pX (xi)

= pX (xh) +
h−1∑
i=1

pX (xi)−
h−1∑
i=1

pX (xi)

= pX (xh) .

1.2.3 Continuous Random Variables

Definition 7 (Continuous random variable) A random variable X is
said to be continuous if there exists a function fX (x) such that for any two
real numbers a and b with b > a,

Pr [a < X < b] =

ˆ b

a

fX (x) dx,

fX (x) being called the probability density function2 (pdf) of X.

2Note that taking close or open intervals does not change the probabilities:

Pr [a < X < b] = Pr [a ≤ X < b]

= Pr [a < X ≤ b]

= Pr [a ≤ X ≤ b] .
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The probability density function is analogous to the probability mass
function in the discrete case and it satisfies the following properties

1. fX (x) ≥ 0 for all x.

2.
´∞
−∞ fX (x) dx = 1.

Example 6 Consider the random variable X with pdf given by

fX (x) =

{
c (4x− 2x2) : 0 < x < 2

0 : otherwise

and suppose we want determine the value of c. In order to do that we need
to impose the condition ˆ ∞

−∞
fX (x) dx = 1

ˆ 0

−∞
0dx+

ˆ 2

0

c
(
4x− 2x2

)
dx+

ˆ +∞

2

0dx = 1

ˆ 2

0

c
(
4x− 2x2

)
dx = 1

c

[
2x2 − 2

3
x3

]2

0

= 1

so that

c =
3

8
.

Analogously to the discrete case, the cdf can be defined also for continuous
random variables

Definition 8 Consider a continuous random variable X; the cumulative
distribution function is defined as

FX (x) = Pr [X ≤ x] =

ˆ x

−∞
fX (a) da

Therefore, whenever FX (x) has a derivative, we have that

fX (x) =
∂FX (x)

∂x

The cdf of a continuous random variable satisfies the following properties,
which are analogous to the case of a discrete random variable:
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1. limx→−∞ FX (x) = 0

2. limx→∞ FX (x) = 1

3. If x1 > x2 then FX (x1) ≥ FX (x2)

4. Pr [a < X < b] = FX (b)− FX (a). This implies that

Pr [X = a] = FX (a)− FX (a) = 0

1.2.4 Random Vectors

So far we have dealt with univariate random variables. We can take a more
general approach by working with multivariate random variables. This is
done by introducing the concept of random vector, that is of an ordered
collection of univariate random variables. The concepts of probability distri-
bution and probability density function can be generalised in a straightfor-
ward way in order to be applied to random vectors.

Definition 9 Consider the discrete random vector (X, Y ) with X taking val-
ues in {x1, x2, . . .} and Y taking values in {y1, y2, . . .}. The joint probabil-
ity mass function pXY (x, y) is defined as

pXY (x, y) = Pr (X = x, Y = y) .

The joint probability mass function satisfies the following properties:

1. 0 ≤ pXY (x, y) ≤ 1,∀ (x, y).

2.
∑∞

i=1

∑∞
j=1 pXY (xi, yj) = 1.

Definition 10 Consider a continuous random vector (X, Y ). The joint
density function fXY (x, y) is such that

Pr
[
x < X < x, y < Y < y

]
=

ˆ y

y

ˆ x

x

fXY (x, y) dxdy.

The joint density function satisfies the following properties:

1. fXY (x, y) ≥ 0, ∀ (x, y).

2.
´∞
−∞

´∞
−∞ fXY (x, y) dxdy = 1.
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When working with random vectors we sometimes need to consider the prob-
ability distribution or the density of a single component, e.g. pX(·) or fX(·)
defined in sections 1.2.2 and 1.2.3 respectively. In this context we refer to
pX() as the marginal mass function of X and to fX(·) as the marginal
density of X. Note that the joint distribution contains more information
than the marginal distributions of all the components of the vector. In par-
ticular, the marginal mass function can be obtained from the joint mass
function as

pX (x) =
∞∑
j=1

pXY (x, yj)

while the marginal densities are given by

fX (x) =

ˆ ∞
−∞

fXY (x, y) dy.

Obviously the concepts introduced in this section can be extended to
collections of n random variables (X1, X2, . . . , Xn).

Analogously to the univariate case, we can also define the joint cumu-
lative distribution function:

FXY (x, y) = Pr [X ≤ x, Y ≤ y]

and are evaluated as

FXY (x, y) =
∑
u≤x

∑
v≤y

pXY (u, v)

if the variables are discrete, and as

FXY (x, y) =

ˆ y

−∞

ˆ x

−∞
fXY (u, v) dudv

if the variables are continuous. Further, they both satisfy the following prop-
erties:

1. limx→−∞ FXY (x, y) = limy→−∞ FXY (x, y) = 0.

2. limx→∞ FXY (x, y) = FY (y).

3. limy→∞ FXY (x, y) = FX (x).

4. limx→∞ [limy→∞ FXY (x, y)] = 1.

5. fXY (x, y) =
∂2FXY (x, y)

∂x∂y
for continuous random variables.
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1.2.5 Conditional distribution, conditional density and indepen-
dence

In section 1.1.2 we saw that given two events A and B, the conditional
probability of A given B (denoted by Pr [A |B ]) is given by

Pr [A |B ] =
Pr [A ∩B]

Pr [B]

provided that Pr [B] > 0. An analogous concept can be used in the context
of random variables.

Definition 11 Consider two discrete random variables X and Y . The con-
ditional probability distribution of X given Y is defined as

pX|Y (x |y ) =

{
pXY (x,y)
pY (y)

if pY (y) > 0

0 else
.

Definition 12 Consider two continuous random variables X and Y . The
conditional probability density of X given Y is defined as

fX|Y (x |y ) =

{
fXY (x,y)
fY (y)

if fY (y) > 0

0 else
.

Definition 13 (Independence) Two discrete random variables X and Y
are said to be independent if their joint distribution is the product of their
marginals:

pXY (x, y) = pX (x) pY (y) .

Similarly, two continuous random variables X and Y are said to be indepen-
dent if their joint density is the product of their marginals:

fXY (x, y) = fX (x) fY (y) .

1.3 Moments

Definition 14 Consider a random variable X; its expected value (when
it exists), is a number, denoted by E [X], defined as

E [X] =
∞∑
i=1

xipX (xi)
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if X is discrete or as

E [X] =

ˆ ∞
−∞

xfX (x) dx

if X is continuous.

The intuition is straightforward: the expected value represents the nu-
merical outcome we should expect from the experiment itself.

If a and b are two real numbers, then the expected value has the following
properties:

1. E [a] = a. Formally, this is because3

E [a] =
´∞
−∞ afX (x) dx

= a
´∞
−∞ fX (x) dx

= a.

2. E [aX + b] = aE [X] + b. This is because

E [aX + b] =

ˆ ∞
−∞

(ax+ b) fX (x) dx

= a

ˆ ∞
−∞

xfX (x) dx+ b

ˆ ∞
−∞

fX (x) dx

= aE [X] + b.

Definition 15 Let g : R→ R a continuous function. We define

E [g (X)] =
∞∑
i=1

g (xi) pX (xi)

if X is discrete and

E [g (X)] =

ˆ ∞
−∞

g (x) fX (x) dx

if X is continuous.

3From now on, whenever we have to prove a result involving the expected value operator
we will only work with continuous random variables, as this is the case you are most likely
to encounter during the Econometrics course. The results, however, apply also to the case
of discrete random variables.
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Similarly to the univariate case, we can define the expected value for
random vectors. Formally, this is defined as the vector whose components
are the single expected values:

E [(X, Y )] = (E [X] ,E [Y ]) .

The expected value operator applied to random vectors has the following
properties:

1. E [aX + bY ] = aE [X] + bE [Y ] where a and b two real numbers.

2. Let g : R2 → R a continuous function. Then

E [g (X, Y )] =
∞∑
i=1

∞∑
j=1

g (xi, yj) pXY (xi, yj)

if X and Y are discrete and

E [g (X, Y )] =

ˆ ∞
−∞

ˆ ∞
−∞

g (x, y) fXY (x, y) dxdy

if X and Y are continuous.

We can also calculate conditional expected values. Recall from section 1.2.5
that given two random variables X and Y , we have

pX|Y (x |y ) =

{
pXY (x,y)
pY (y)

if pY (y) > 0

0 else
,

if X and Y are discrete and

fX|Y (x |y ) =

{
fXY (x,y)
fY (y)

if fY (y) > 0

0 else
, (1)

if X and Y are continuous. The conditional expected value is defined as
follows:

Definition 16 (Conditional expected value) Consider two random vari-
ables X and Y . Then the conditional expected value of X with respect to Y
is defined as

E [X |Y = y ] =
∞∑
i=1

xipX|Y (xi |y )
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for the discrete case and

E [X |Y = y ] =

ˆ ∞
−∞

xfX|Y (x |y ) dx

for the continuous case.

The conditional and unconditional expected values of a random variable
X are linked as follows:

Proposition 3 (Law of iterated expectations) Consider two random
variables X and Y ; then

E [X] = EY [E [X |Y ]]

where EY [·] indicates the expected value obtained by treating Y as a random
variable.

The law of iterated expectations can be proved as follows:

EY [E [X |Y ]] =

ˆ

y

ˆ
x

xfX|Y (x |y ) dx

 fY (y) dy

=

ˆ

y

ˆ
x

x
fXY (x, y)

fY (y)
dx

 fY (y) dy

=

ˆ

x

x

ˆ
y

fXY (x, y) dy

 dx
=

ˆ

x

xfX (x) dx

= E [X]

The concept of expected value can be related to that of independence of two
random variables, discussed in section 1.2.5. In particular, if X and Y are
independent then

E [XY ] = E [X] E [Y ] (2)
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This is because

E [XY ] =

ˆ ∞
−∞

ˆ ∞
−∞

xyfXY (x, y) dxdy

=

ˆ ∞
−∞

ˆ ∞
−∞

xyfX (x) fY (y) dxdy

=

[ˆ ∞
−∞

xfX (x) dx

] [ˆ ∞
−∞

yfY (y) dy

]
= E [X] E [Y ]

Note that the independence assumption is sufficient but not necessary for (2)
to hold, that is (2) may hold even if X and Y are not independent.

The concept of expected value can be generalised to that of k−thmoment:

Definition 17 The k−th moment of a random variable X (when it exists),
denoted by µ

′

k, is the expected value of the k − th power of X. Formally

µ
′

k =
∞∑
i=1

xki pX (xi)

if X is discrete and

µ
′

k =

ˆ ∞
−∞

xkfX (x) dx

if X is continuous.

Clearly, the first moment of a random variable X is just its expected
value.

The concept of k−thmoment can be generalised to that centered moment,
which is defined as follows:

Definition 18 The centered moment of a random variable X (when it
exists), denoted by µk, is the expected value of the k− th power of X−E [X].
Formally

µk = E
[
(X − E [X])k

]
=


∞∑
i=1

(xi − E [X])k pX (xi) if X is discrete´∞
−∞ (x− E [X])k fX (x) dx if X is continuous
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Therefore, the centered moment is obtained from the expression for the
k − th moment µ

′

k by replacing X with X − E [X]. When k = 2 we obtain
the variance of the random variable X, formally defined as follows

Definition 19 Given a random variable X, its variance is defined as

µ2 = Var [X] = E
[
(X − E [X])2] .

The variance can be interpreted as an indicator of variability: the smaller
it is, the more concentrated a random variable is around its mean. Rather
than from the definition, computation of the variance is often simplified as
follows:

Lemma 4 The variance of a random variable X may be computed as

Var [X] = E
[
X2
]
− (E [X])2 .

Proof

Var [X] = E
[
(X − E [X])2]

= E
[
X2 − 2XE [X] + (E [X])2]

= E
[
X2
]
− 2 (E [X])2 + (E [X])2

= E
[
X2
]
− (E [X])2 .

The variance of a random variable X has the following properties:

1. If a is a constant then Var [a] = 0.

2. If a and b are real-valued constants then Var [aX + b] = a2Var [X].
This is because

Var [aX + b] =

ˆ ∞
−∞

(ax+ b− E [aX + b])2 fX (x) dx

= a2

ˆ ∞
−∞

(x− E [X])2 fX (x) dx

= a2Var [X]
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Since Var [X] ≥ 0 for any random variable X, we can define the standard
deviation as

√
Var [X]. The latter is an alternative indicator of variability

and has the same scale as X (i.e. if X is a profit measured in pounds, the
standard deviation is also an amount expressed in pounds).

In some applications we may be interested in assessing the degree of
dependence between two univariate random variables. This can be done by
deploying the concept of covariance, which is defined as follows:

Definition 20 The covariance between two random variables X and Y is
defined as

Cov [X, Y ] = E [(X − E [X]) (Y − E [Y ])] . (3)

Obviously, if X = Y then Cov [X, Y ] = Var [X]. Rather than from
the definition, computation of the variance is often simplified by using the
formula

Cov [X, Y ] = E [XY ]− E [X] E [Y ] . (4)

which is directly obtained from (3).
From (4) two results follow:

1. whenever E [X] or E [Y ] (or both) are equal to zero then Cov [X, Y ] =
E [XY ].

2. if two random variables are independent then Cov [X, Y ] = 0 (although
the converse is not necessarily true). This results requires taking (2)
into account.

From the definition of covariance in (3) the following properties follow:

1. Cov [X, Y ] = Cov [Y,X].

2. The covariance between linear combinations of random variables can
be expressed as

Cov [aX, bY ] = abCov [X, Y ] ,

where a and b are real numbers.

3. The variance of the sum of two random variables is given by

Var [X + Y ] = Var [X] + Var [Y ] + 2Cov [X, Y ] ;
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this is because

Var [X + Y ] = E
[
(X + Y − E [X + Y ])2]

= E
[
(X − E [X] + Y − E [Y ])2]

= E
[
(X − E [X])2]+ E

[
(Y − E [Y ])2]+ 2E [(X − E [X]) (Y − E [Y ])]

= Var [X] + Var [Y ] + 2Cov [X, Y ] ,

and implies that when Cov [X, Y ] = 0, the variance of X + Y is just
the sum of the variances.

A disadvantage of using the covariance as a measure of the degree of depen-
dence between two random variables is that it is unbounded, in the sense
that it can take any value in R. In order to overcome this problem, we can
define the (linear) correlation coefficient as

ρ [X, Y ] =
Cov [X, Y ]√

Var [X] Var [Y ]
.

It can be shown that for any random vector (X, Y ),

−1 ≤ ρ [X, Y ] ≤ 1;

when ρ [X, Y ] = 0, then X and Y are said to be uncorrelated. The following
properties hold:

1. ρ [X, Y ] = −1 if and only if Y = aX + b, a < 0, a, b constant.

2. ρ [X, Y ] = 1 if and only if Y = aX + b, a > 0, a, b constant.

3. If X and Y are independent then ρ [X, Y ] = 0 (although the converse
is not true); this means that if two random variable are independent
they are also uncorrelated.

The concept of covariance can be generalised so to be applied to random vec-
tors of any dimensions. Consider the n×1 random vector x = (X1, . . . , Xn)′;
the variance matrix is an n× n matrix defined as

V ar [x] = E[(x− E [x]) (x− E [x])′]
n× n n× 1 1× n .

The entries on the diagonal are just the variances of X1, . . . , Xn. The off-
diagonal entries are Cov [Xi, Xj] , i 6= j. The covariance matrix has the useful
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property that if the vector x is premultiplied by an m × n non-stochastic
matrix A then

Var( Ax ) = A Var [x] A′

m× 1 m× n n× n n×m .

where Var [Ax] is an m×m matrix. In order to prove this result, define

y = Ax

so that
Var [Ax] = Var [y]

= E
[
(y − E [y]) (y − E [y])′

]
= E

[
A (x− E [x]) (x− E [x])′A′

]
= AE

[
(x− E [x]) (x− E [x])′

]
A′

= AVar [x] A′.

Note that the variance matrix is symmetric and positive semidefinite.

1.3.1 Two useful rules

1. If X is a random variable and g(.) a function then in general

E (g (X)) 6= g (E (X))

2. If f(X, θ) is a function differentiable with respect to θ and X a random
variable then

∂

∂θ
EX (f (X, θ)) = EX

(
∂

∂θ
f (X, θ)

)
that is (under mild regularity conditions) one may interchange the ex-
pectation and differentiation operators.

1.4 Distribution Theory

1.4.1 The Bernoulli distribution

A random variable X has a Bernoulli distribution if it can only take two
values, X = 0 or X = 1. Its probability density function is given by

pX (x) = πx · (1− π)1−x
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where π denotes the probability of observing the event X = 1. Its expected
value and variance are respectively given by

E [X] = π

Var [X] = π (1− π) .

The Bernoulli distribution will be extensively used in the context of binary
choice models.

1.4.2 The Poisson distribution

A random variable X has a Poisson distribution if it can take values on N.
Its probability density function is given by

pX (x) =
λx

x!
e−λ.

Its expected value and variance are given by

E [X] = Var [X] = λ.

1.4.3 The Normal (Gaussian) distribution

If a random variable X is normally distributed with parameters µ and σ2 (in
short X ∼ N (µ, σ2)) it has density

fX (x) =
1√

2πσ2
exp

{
−1

2

(x− µ)2

σ2

}

characterised by the two parameters µ and σ2. The function is bell-shaped
and symmetric around µ. The first two moments of the Gaussian distribution
are its parameters:

E [X] = µ

Var [X] = σ2.

There is no closed form expression for the cdf FX (x), but its values are
tabulated for the case µ = 0 and σ2 = 1 (the standard normal distribution).
Conventionally, the density function of the standard normal is denoted by
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φ (z), while its cdf by Φ (z). Any given normally distributed random vari-
able X with parameters µ 6= 0 and σ2 6= 1 can be thought of as a linear
transformation of the standard normal with

X = µ+ σZ

and Z ∼ N (0, 1). As a result, the probability that X falls in any interval
(a, b) may be computed as a function of probabilities involving Z:

Pr [a < X < b] = Pr [a < µ+ σZ < b]

= Pr [a− µ < σZ < b− µ]

= Pr

[
a− µ
σ

< Z <
b− µ
σ

]
= Pr

[
Z <

b− µ
σ

]
− Pr

[
Z <

a− µ
σ

]
= Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
.

It is particularly convenient to express the probability in this form because
values of Φ (z) for some useful points z are available from the statistical
tables and are known good numerical ways to approximate Φ (z) to any
desired degree of accuracy for any x.

The Gaussian distribution has a multivariate form that can be used to
work with random vectors. A random vector x = (X1, . . . , Xn)′ has a mul-
tivariate normal distribution with expected value E [x] = µ and variance
matrix Var [x] = Σ if its joint distribution is given by

f (x1, . . . , xn) =
1

(2π)n/2 det [Σ]1/2
exp

{
−1

2
(x− µ)′Σ−1 (x− µ)

}
.

A very useful property is that any linear combination of jointly Gaussian
random variables is also Gaussian. Consider an m×n non-stochastic matrix
A. It can be shown that Ax (a linear combination of the components of x)
is an m× 1 Gaussian random vector and in particular

Ax ∼ N( Aµ, AΣA′ )
m× 1 m× 1 m×m
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1.4.4 The χ2 distribution

Consider v independent random variables Zi, i = 1, ..., v with standard nor-
mal distribution, that is Zi ∼ N (0, 1); then the random variable X defined
as

X =
v∑
i=1

(Zi)
2

has a chi-squared (χ2) distribution with v degrees of freedom. Formally, the
density function of X is given by

fX (x) =

{
(1/2 )v/2

Γ(v/2 )
x

v
2
−1e−x/2 x > 0

0 otherwise

where Γ (k) =
´∞

0
xk−1e−xdx is the Gamma function. Its first two moments

are

E [X] = v

Var [X] = 2v.

1.4.5 The Student’s t distribution

The Student’s t distribution with v degrees of freedom is obtained as the
ratio between a standard normal and the square root of a χ2

v divided by the
number of degrees of freedom v. Formally if Z ∼ N (0, 1), X ∼ χ2

v and Z
and X are independent then

Z√
X /v

∼ tv.

The density function is bell-shaped and symmetric around zero.

1.4.6 The F distribution

The F distribution with v1 and v2 degrees of freedom (where v1 denotes
the degrees of freedom of the numerator and v2 those of the denominator) is
obtained as the distribution of the ratio of two independent random variables
with χ2 distribution, each divided by its degrees of freedom. Formally,

X1 /v1

X2 /v2

∼ Fv1,v2
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if X1 ∼ χ2
v1

and X2 ∼ χ2
v2

, X1 and X2 being independent.
The F distributed random variable can only take positive values (since

it’s the ratio of two random variables that can only take positive values).

1.5 Statistical inference

1.5.1 Definitions

In statistical inference we start with a probability model to describe the be-
haviour of a population of interest. Some aspects of the model are however
unknown, possibly because we know the functional form of a parametric dis-
tribution function but not the values of its parameters. The aim of inference
is to assign a value to those unknown parameters. We now introduce the
concepts of sample, observation and statistic.

Definition 21 A sample is a collection of random variables (say X1, X2, . . . , Xn)
from the population. If the random variables constituting the sample are inde-
pendently and identically distributed, then the sample is said to be random.

Definition 22 An observation is the known value that each collected ran-
dom variable assumes (say X1 = x1, X2 = x2, . . . , Xn = xn).

Definition 23 A statistic is a function of the sample (say θ̂ = θ̂ (X1, X2, . . . , Xn)′).
Therefore, a statistic is random variable.

Example 7 Some useful statistics are:

1. Sample mean, X̄ =
∑n

i=1 Xi /n ;

2. Sample variance,
∑n

i=1

(
Xi − X̄

)2
/n ;

3. Sample covariance (when we jontly sample two variables X and Y )∑n

i=1

∑n

j=1

(
Xi − X̄

) (
Yj − Ȳ

)
/n .

A possible source of confusion arises from the use of the terms sample
moments and population moments. The former are descriptive statistics,
and therefore random variables whose value (or realisation) is known. The
latter are (usually) unknown constants; see 1.3.

Statistical inference can be classified into point estimation and interval
estimation: in the former case we are interested in assigning a value to an
unknown parameter; in the latter case we define an interval within which we
are confident that the true value of the unknown parameter falls.
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1.5.2 Point estimation

Point estimation is an inferential procedure that tries to learn about the value
of an unknown parameter, say θ, from the sample information.

Definition 24 (Estimator and Estimate) An estimator is a statistic
we use to assign a value to an unknown parameter. An estimate is the
actual value assumed by the estimator. In other words, the estimator is a
random variable, and thus has a distribution; an estimate is a particular
realised value of the estimator.

1.5.3 Methods of point estimation

For any estimation problem one can think of different alternative estimators.
Possible general strategies to obtain point estimators are the following.

Method of moments The method of moments estimator is based upon
substituting unknown population moments by their sample counterparts.

As an example, consider the random sample X1, . . . , Xn. Suppose we
want to estimate the centered population moment

θ = E
[
(X − E [X])k

]
The sample counterpart is given by

θ̂MM =
1

n

∑n

i=1

(
Xi − X̄

)k
.

Note that in order to estimate θ by method of moments we did not have to
fully specify the distribution of the underlying population.

Maximum likelihood A general and powerful method of estimation is
that known as maximum likelihood. The idea behind maximum likelihood
estimation consists in finding the estimate for the unknown parameter θ that
maximises the likelihood of observing the sample.

Suppose we start with a random sample of n observations X1, . . . , Xn

drawn from a probability density function f (X | θ) involving an unknown
parameter θ. The space Θ is the set of permissible values for θ. If we denote
the complete set of observations by the vector X = (X1, . . . , Xn), then the
joint probability density function of X may be written as
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f(X | θ) = f (X1 | θ) f (X2 | θ) . . . f (Xn | θ)

In probability theory the function f(X | θ) gives the probability of observ-
ing the sample given the parameter θ (remembering that a random sample
gives independent drawings from the population so the probabilities multi-
ply). In particular if

f(x1, . . . , xn | θ) > f(x
′

1, . . . , x
′

n | θ)

then we may (loosely) say that observing x1, . . . , xn is “more likely” than
observing x

′
1, . . . , x

′
n. However, in estimation theory we observe the value of

X and wish to say something about θ. Now consider f(X | θ) as a function of
θ (with X fixed at the observed values). We call this the likelihood function
of θ. If

f(X | θ1) > f(X | θ2)

we may (loosely) say that θ1 is a “more plausible” value of θ than θ2, since
θ1 assigns a larger probability to the observed X than does θ2. The principle
of maximum likelihood just says that we should use as our estimator of θ
the parameter point for which our observed sample is most likely. That is,
we should choose the value of θ which maximises the likelihood function. To
emphasise that we have moved from considering the probability of the sample
given the parameter θ to considering the likelihood of the parameter θ given
the sample we use a different notation for the likelihood function, L(θ | X).
So

L(θ | X) = f(X | θ)

The maximum likelihood estimator is therefore the value of θ that max-
imises L (θ;X1, . . . , Xn), that is

θ̂ML = arg max
θ∈Θ

L (θ;X1, . . . , Xn) .

If the likelihood function is differentiable as a function of θ then possible
candidates for the maximum likelihood estimator are the values of θ for
which

∂

∂θ
L(θ | X) = 0

Note that solutions are only candidates for the MLE, the derivative being
zero is only necessary for a maximum, not sufficient. The second derivative
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must be negative for a maximum, though this guarantees only a local max-
imum, not global. In addition if the parameter θ is restricted to lie in some
region Θ then the extrema may occur on the boundary of Θ, and the deriva-
tive need not be zero there. Maximum likelihood estimates can also be found
by direct maximisation of the likelihood function via numerical search meth-
ods.

As an example consider a random sampleX1, . . . , Xn drawn from a Bernoulli
distribution

pX (x) = πx (1− π)1−x

where π is the unknown parameter. The likelihood function is then given by

L (π;x1, . . . , xn) =
n∏
i=1

[
πxi (1− π)1−xi]

= π(
∑n

i=1 xi) (1− π)(n−
∑n

i=1 xi)

Taking logs we obtain the log likelihood function4

l (π;x1, . . . , xn) =
∑n

i=1
xi log π +

(
n−

∑n

i=1
xi

)
log (1− π) ;

differentiating with respect to π we have

∂l (π;x1, . . . , xn)

∂π
=

∑n
i=1 xi
π

− n−
∑n

i=1 xi
1− π

so that the the maximum likelihood estimate of π is obtained by setting this
to zero ∑n

i=1 xi
π̂ML

− n−
∑n

i=1 xi
1− π̂ML

= 0

so

π̂ML =

∑n
i=1 xi
n

while the maximum likelihood estimator is

π̂ML =

∑n
i=1 Xi

n
.

Note that in order to estimate θ by maximum likelihood we have to make
assumptions about the distribution of the population.

4Note that given a function f (x), log f (x) is a monotonic transformation of f (x).
Therefore, log f (x) achieves the maximum at the same point as f (x).

24



Least squares In the least squares approach we consider characteristics of
the residuals, i.e. the features of the observations xi that are not explained
by the model. The residual ei (θ) is defined as the difference between the
observation xi and the predicted value of xi implied by θ, say x̂i (θ), that is

ei (θ) = xi − x̂i (θ) .

The sum of squared residuals is

S (θ) =
n∑
i=1

e2
i (θ)

The resulting least squares estimator is the value of θ (say ˆθLS) that minimises
S (θ), that is

θ̂LS = arg min
θ
S (θ) .

As an example, suppose we want to estimate the expected value θ of a random
variable X. Therefore, given the random sample X1, . . . , Xn we have

θ̂ = arg min
θ

n∑
i=1

(Xi − θ)2 .

Taking derivatives with respect to θ

∂

∂θ

n∑
i=1

(Xi − θ)2 = −2 ·
n∑
i=1

(Xi − θ) .

Setting it equal to 0 we have

−2 ·
n∑
i=1

(
Xi − θ̂

)
= 0

n∑
i=1

Xi − nθ̂ = 0

θ̂ =
1

n

n∑
i=1

Xi

Note that in order to estimate θ by least squares we did not have to make
any assumption about the distribution of the population.
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1.5.4 Selection criteria for point estimators

Definition 25 (Unbiasedness) An estimator θ̂ of an unknown parameter
θ is said to be unbiased if its expected value is equal to θ, that is

E
[
θ̂
]

= θ.

Definition 26 (Bias) The bias of an estimator is defined as

bias
(
θ̂
)

= E
[
θ̂
]
− θ

Unbiasedness per se is not a strong requirement. Many criteria have
been developed to select the best estimator among several alternative unbi-
ased estimators. A very important property of any estimator is its variance:
estimators with lower variance should be preferred because the probability
of getting a point estimate close to the true value is high.

Definition 27 An estimator is the best linear unbiased estimator (BLUE)
if it is unbiased, it is linear and has the minimum variance among the linear
unbiased estimators.

Theorem 5 (Cramer-Rao Lower Bound) Under some regularity condi-
tions, the variance of an unbiased estimator of an unknown parameter θ will
always be at least as large as

[I (θ)]−1 =

[
−E

(
∂2 logL (θ)

∂θ2

)]−1

=

{
E

[(
∂ logL (θ)

∂θ

)2
]}−1

where I (θ) is the information matrix.

Sometimes we are prepared to tolerate a small bias if the estimator has
a considerably smaller variance. To choose between alternative estimators
when this trade-off is present, we can select the one with the smallest possible
mean squared error, defined as

Definition 28 (Mean Squared Error) The mean squared error (MSE)
of an estimator θ̂ is defined as

MSE
[
θ̂
]

= E

[(
θ̂ − θ

)2
]

.
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The MSE takes into account both the variance and the bias of the esti-
mator θ̂. This can more clearly be seen by writing the MSE as

MSE
[
θ̂
]

= E

[(
θ̂ − θ

)2
]

= Var
[
θ̂
]

+
(
bias

(
θ̂
))2

.

Obviously, the MSE of an unbiased estimator is equal to its variance.

1.5.5 Interval estimation

In some cases, instead of using a point estimate of an unknown parameter
we might be interested in constructing an interval estimate (or confidence
interval).

Definition 29 A confidence interval at a given level α ∈ (0, 1) for a
parameter θ is an interval in R such that the true value of the parameter lies
within the interval with a preassigned probability equal to (1− α).

Note that the bounds of the confidence interval depend on the available
sample. The key concept behind the construction of a confidence interval is
that of pivotal quantity.

Definition 30 A pivotal quantity is a function of both a point estimator
and an unknown parameter that has a known distribution.

Note that a pivotal quantity is not a statistic, so its value cannot be
computed. We will now see how confidence intervals can be built for the
Normal and Student’s t distributions.

Case 1 Consider a statistic θ̂, which is known to be normally distributed
with mean θ and known variance σ2 /n , that is

θ̂ ∼ N

(
θ,
σ2

n

)
;

the pivotal quantity can then be obtained by means of the linear transfor-
mation

q =
θ̂ − θ
σ /
√
n
∼ N (0, 1) .
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It is easy to see why q is a pivotal quantity: it is a function of θ̂ (a point
estimator) and θ (an unknown parameter) and its distribution (the standard
normal) is known because it does not depend upon any unknown parameter.
Since the distribution of q is known regardless the value of θ, we can find a
scalar c > 0 from statistical tables so that

Pr

[
−c ≤ θ̂ − θ

σ /
√
n
≤ c

]
= (1− α) .

Since q is a linear function of θ̂ then

Pr

[
θ̂ − σc√

n
≤ θ ≤ θ̂ +

σc√
n

]
= (1− α) .

Note that θ̂ − σc /
√
n and θ̂ + σc /

√
n are known functions of c (which is a

known constant) and θ̂, which can be computed from the data. Therefore, the
bounds of the confidence interval can be computed and we have the required
results. Typical values for α are α = 0.05, 0.1.

Case 2 Consider a statistic θ̂, which is known to be normally distributed
with mean θ and variance σ2 /n , both unknown. In addition suppose that
the unknown quantity σ2 can be estimated by means of a statistic s2, which
is independent of θ̂, and is such that

s2

σ2
=
Z

v
where Z ∼ χ2

v.

The following ratio (
θ̂ − θ
σ /
√
n

)/√
s2

σ2
=
√
n
θ̂ − θ
s
∼ tv

is a pivotal quantity5. Therefore, we can construct a confidence interval using
Student’s t tables:

Pr

[
θ̂ − st∗√

n
≤ θ ≤ θ̂ +

st∗√
n

]
= (1− α) ,

where t∗ > 0 is the value that leaves a probability of α /2 in the right tail of
the tv distribution.

5See section 1.4.5 to understand why
√
n θ̂−θs ∼ tv.
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1.5.6 Hypothesis testing

Often in empirical economic studies we need to obtain a rule to assess the
validity of a certain assumption about the underlying population. As we have
already discussed, the population is described by a model; therefore, imposing
an assumption on the population is equivalent to imposing an assumption on
the model. For example, we might want to assess whether a certain factor
affects the dependent variable of our model. Intuitively, we have to run a test
to decide whether our assumption about the model is “right” or should be
abandoned in favour of another assumption. Formalisation of this intuition
leads us to the following three definitions:

Definition 31 A statistical test about a certain assumption is a rule that
tells us, given the available data, whether we should reject the assumption or
not.

Definition 32 The null hypothesis (denoted by H0) makes a specific as-
sertion about the population parameters.

Definition 33 The alternative hypothesis (denoted by H1) is the hypoth-
esis against which the null hypothesis is tested.

In order to run the test we need a test statistic defined as follows

Definition 34 A test statistic t is a function of the sample.

The value taken by a test statistic t can fall into an acceptance region
(denoted by A) where we do not reject the null hypothesis H0and a rejection
region (denoted by R) where we reject H0. That is we divide up the sample
space Ω (the totality of values that the random sample X can take) into two
regions A and R such that they partition the sample space Ω; that is the two
regions are mutually exclusive (A ∩ R = φ) and exhaustive (together they
give the sample space). This partitioning of the sample space ensures that
there are no possible outcomes in Ω for which we would

(a) both reject and not reject H0

or
(b) neither reject nor not reject H0

Since the sample is a collection of random variables, the test statistic is a
random variable. Further, the test statistic is such that when H0 is true its
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distribution is known and does not depend upon unknown parameters. Of
course, since the true population is unknown, a statistical test can always
give rise to errors. Given the form of the statistical test for H0 we have only
two choices, reject or not reject H0. The possible outcomes are

Truth
H0true H0false

Not Reject H0 X Type II error
Decision

Reject H0 Type I error X

That is we commit a Type I Error if we reject the hypothesis H0 when it is
in fact true, and a Type II Error if we do not reject H0 when it is false. Note
that this exhausts the possibilities.

Ideally we would like the probabilities of Type I and Type II errors to
both be zero. But we can’t do this. We can always control for the probability
of incurring in a Type I error. This is done by choosing the significance level
(or size) of the test defined as follows:

Definition 35 The significance level (or size) of the test is defined as

α = Pr [Type I error] = Pr [reject H0 |H0 is true ]

Normally the size of the test is set equal to 10%, 5% or 1%. Clearly, if we
decrease the size of the test we decrease the probability of wrongly rejecting
a true null. However, this comes to the expense of increasing the probability
of committing a Type II error: therefore, there is a trade off between Type I
and Type II errors. The probability of incurring in a Type II error leads us
to the definition of the power of the test:

Definition 36 The power of the test is defined as the probability of rejecting
a false null hypothesis, that is

power = 1− β = 1− Pr [Type II error] .

Clearly, for a given size α we want β to be as small as possible (or equiva-
lently the power to be as high as possible). Therefore when choosing amongst
several available tests we should always go for the one that has the highest
power given the chosen level of significance. This may not be such an easy
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task because the power of the test depends upon the particular alternative
we are considering.

The actual definition of the rejection region depends on whether the test
we wish to run is two-sided or one-sided. If the test is two-sided then H0

and H1 are specified as

H0 : θ = θ0

H1 : θ 6= θ0.

In this case, if the distribution of the test statistic has two tails (like the Gaus-
sian or the Student’s t) then R is defined as R = {{t |t < t∗} ∪ {t |t > t∗∗}}
where t∗ and t∗∗ (the critical values) are chosen so that Pr [t |t∗ < t < t∗∗ ] =
Pr [t ∈ A |H0 ] = 1−α. Conversely, if the distribution of the test statistic has
one tail (like the F or the χ2) then R is defined as R = {t |t > t∗}, where t∗

is such that Pr [t |t < t∗ ] = Pr [t ∈ A |H0 ] = 1− α.
If the test is one-sided then H0 and H1 are specified as

H0 : θ ≤ θ0

H1 : θ > θ0
or

H0 : θ ≥ θ0

H1 : θ < θ0
.

In this case, we use a test statistic with a one-tailed distribution. Therefore,
if the null hypothesis is H0 : θ ≤ θ0, then R = {t |t > t∗} where t∗ is chosen
so that Pr [t |t > t∗ ] = α; conversely, if the null hypothesis is H0 : θ ≥ θ0,
then R = {t |t < t∗} where t∗ is chosen so that Pr [t |t < t∗ ] = α.

To summarise, a hypothesis test consists of the following steps:

1. Define the null hypothesis H0 and the alternative hypothesis H1.

2. Decide on the appropriate test statistic.

3. Select the significance level α.

4. Define the rejection region R.

5. Formulate the test criterion: do not reject H0 when t ∈ A, reject H0

when t ∈ R.

6. Take your sample.

7. Compute the statistics.

8. Apply the test criterion.
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