
Linear Algebra
MPhil Preliminary Course 2020–2021

Daniel Wales
Faculty of Economics

University of Cambridge



Contents

1 Introduction 4

2 Preliminary concepts 5
2.1 De�nitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Special matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Operations with vectors and matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Addition and scalar multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Geometric interpretation of the dot product (∗) . . . . . . . . . . . . . . . . . . 11
2.3.4 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Matrices as operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Elementary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Systems of linear equations 22
3.1 Linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Linear dependence and rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Application: complete asset markets . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Square matrices 30
4.1 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Geometry of the determinant (∗) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Computing the inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Special inverses (∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Application: ISLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Application: principal components (∗) . . . . . . . . . . . . . . . . . . . . . . . 42

5 Diagonalisation and powers of G 44
5.1 Di�erence Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Application: labour markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Application: vector autoregression . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Application: Fibonacci sequence (∗) . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Symmetric and positive de�nite matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Vector and matrix calculus 51
6.1 The Jacobian and the Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Geometric interpretation of the Jacobian matrix . . . . . . . . . . . . . . . . . . 52
6.1.2 Geometric interpretation of the Hessian matrix . . . . . . . . . . . . . . . . . . 54
6.1.3 Application: cost minimisation (∗) . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 References 59

2



A Summary of key results 60
A.1 Vector and matrix di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Additional Material (All Non-Examinable) 63
B.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1.1 Hadamard and Kronecker product (∗) . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 Square matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.2.1 Determinant by Laplacian expansion (∗) . . . . . . . . . . . . . . . . . . . . . . 64
B.3 Vector and matrix calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3.1 Derivative with respect to a matrix (∗) . . . . . . . . . . . . . . . . . . . . . . . 69

3



1 Introduction

The purpose of these notes is to provide you with the linear algebra tools required for the mphil course.
The results are presented in a heuristic manner in that we do not prove them. The idea is that you
will be able to apply them comfortably in unseen questions. Sections marked with a (∗) are for your
information only and are not examinable for the Precourse exam. This means that you can safely skip
them. They are included to make these notes more “complete” and some of you may �nd them useful
during the course.

Email me with any typos, corrections and suggestions at ddgw2@cam.ac.uk. These notes are based on
the notes and comments of Alexis De Boeck, Nicolas Paez, Donald Robertson and Ekaterina Smetanina.
Many thanks go to them.

Before starting a course on linear algebra, it is useful to consider why economists may wish to understand
these issues. Broadly, in economics the motivation for understanding concepts in linear algebra may be
categorised as follows:

(i) If expressed in matrix from, the mathematical results from linear algebra may be applied directly
to economic problems and proofs;

(ii) Modern economists work with vast amounts of data and matrices are often the clearest and most
convenient form for describing problems and their solution;

(iii) More complicated problems can often be linearised and solved easily to a good degree of approx-
imation.

I hope to illustrate some of these bene�ts through economic applications of linear algebra in these notes,
though the real bene�t of an understanding of linear algebra is likely to be more scattered throughout
the mphil course.

There are two primary ways to contemplate topics in linear algebra:

(i) A geometric interpretation takes vectors as arrows in some set of space (e.g. R2). Each vec-
tor is de�ned by a length and a direction in that space. This leads itself neatly to a graphical
representation of concepts.

(ii) Alternatively, the building blocks and concepts in linear algebra may be thought of as involving
lists of numbers, where order in the list matters.

I hope to provide an understanding of both views, presenting both graphical and purely mathematical
arguments for the concepts in these notes to build knowledge of both interpretations, and encourage
you to interlink both views.
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2 Preliminary concepts

2.1 De�nitions and notation

De�nition 1. A matrix of order = × ? is a rectangular array of numbers with = rows and ? columns

G := [(G)8 9 ] =


011 012 . . . 01?

021 022 . . . 02?
...

...
. . .

...

0=1 0=2 . . . 0=?


.

A matrix, r , of order 1 × ? is called a row vector and a matrix, c , of order = × 1 is called a column vector.

r
1×?

=

[
A1 A2 . . . A?

]
, c

=×1
=


21

22
...

2=


.

Matrices and vectors (usually in column form) are the primary building blocks for geometrical interpret-
ations in linear algebra. We will work extensively with them throughout.

Example 2.1. The use of matrices in economics is widespread, as they may be used to store vast
amounts of information in a coherent, organised manner. One such application is through the use of an
Leontief input-output matrix to represent how intermediate goods from one industry or sector are used
in the production process of another. Each element in the matrix (G)8 9 represents the amount of goods
from sector 8 which demanded by sector 9 . One example for a simple 3 sector economy is set out below,
which concatenates the production vectors from each industry.

G =

From\to Agriculture Manufacturing Services


Agriculture 0.2 0.05 0.01
Manufacturing 0.3 0.5 0.1

Services 0.3 0.1 0.3

De�nition 2. A matrix of order = × ? is said to have row dimension = and column dimension ? .

De�nition 3. The transpose of an = × ? matrix G is de�ned by G′ := [(G)98]. It is the ? × = matrix
obtained by interchanging the rows and columns of G.
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Example 2.2. When the rows and columns of the matrix G are interchanged we observe the transpose
G′.

G
=×?

=


011 012 . . . 01?

021 022 . . . 02?
...

...
. . .

...

0=1 0=2 . . . 0=?


infers that G′

?×=
=


011 021 . . . 0=1

012 022 . . . 0=2
...

...
. . .

...

01? 02? . . . 0=?


.

We will use the following notation: bold italic capital letters, e.g. G and H, denote matrices, bold
italic lower-case letters, e.g. a and b , are vectors and scalars are all in lower case. The set of natural
numbers, integers and real numbers are respectively N, Z and R. The =-dimensional Euclidean space is
R= . Subscripts are used to indicate that we are looking at a particular element of a larger quantity. For
example, we may use 08 to denote the 8th element of the vector a or a 9 to represent the 9 th column of the
matrix G. The 8 9th element of G is represented by (G)8 9 . All vectors are column vectors; if we need to
work with the rows of a matrix we denote these by using a superscript, e.g. a8 is the 8th row of G.

2.2 Special matrices

Below is a list of matrices which will be of particular interest during these lectures. We are running
ahead of ourselves as we have not yet de�ned any operations on vectors or matrices, but you can return
to this section after completing the notes.

De�nition 4. A matrix is said to be square if it has the same number of columns as rows, i.e. = = ? .

Example 2.3. Examples of square matrices include a scalar, a, a 2 × 2 matrix, H, and a 3 × 3 matrix, I .

a
1×1

= 1, H
2×2

=

[
1 3
3 4

]
, I

3×3
=


1 2 3
4 5 6
7 8 9

 .

De�nition 5. A matrix G is symmetric if it is equal to its transpose, i.e. G = G′. A scalar will be
symmetric by de�nition.

Example 2.4. In the example above, the matrix H is symmetric, as H = H′, while the matrix I is clearly
not since I ≠ I ′.

Exercise 2.1. Given that G is symmetric and H is skew-symmetric (H = −H′), �nd 0, 1, 2 , D, E ,F , G , ~
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and I.

G =


3 0 −1
2 5 2

1 8 2

 , H =


D 3 E

F G ~

−2 6 I

 .

De�nition 6. A square matrix J is diagonal if it is of the form

J := diag(31, . . . , 3=) =


31 0 . . . 0
0 32 . . . 0
...

...
. . .

...

0 0 . . . 3=


,

where the elements o� the main diagonal are all zero. Diagonal matrices are always symmetric.

Example 2.5. The identity matrix is the diagonal = × = matrix with ones as diagonal elements

O= := diag(1, . . . , 1) =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


.

Furthermore, pre- or post-multiplying any square matrix, G
=×=

, by the identity matrix, O= will leave that
matrix unchanged such that GO= = G = O=G. As the identity matrix, O= , is a diagonal matrix it is also
symmetric.

De�nition 7. A square matrix, R, is lower triangular if all its elements above the main diagonal are
zero. The transpose of a lower triangular matrix, [ = R′ is known as an upper triangular matrix.

R =


011 0 . . . 0
021 022 . . . 0
...

...
. . .

...

0=1 0=2 · · · 0==


, [ = R′ =


011 021 . . . 0=1

0 022 . . . 0=2
...

...
. . .

...

0 0 · · · 0==


.

Triangular matrices are useful in determining the solution to a series of simultaneous linear equations.

De�nition 8. A square matrix G is orthogonal if G′G = O= = GG′. Hence, G−1 = G′.

De�nition 9. A square matrix is called idempotent if it is equal to its square: G = G2.
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(a) (b)

Figure 1: (a) vector addition; (b) vector subtraction.

Exercise 2.2. Show that the identity matrix of any dimension may be said to be square, symmetric,
diagonal, lower triangular, upper triangular, orthogonal and idempotent.

2.3 Operations with vectors and matrices

We would like to discuss basic operations such as addition, subtraction and multiplication between
matrices and in order to do so we need the notion of conformability. Two matrices are conformable if
their dimensions allow the desired operation. Analogously, the operation just does not make any sense
for non-conformable matrices.

2.3.1 Addition and scalar multiplication

Vector and matrix addition (and equivalently subtraction) are de�ned element-wise. Therefore, both
vectors and matrices need to be of the same dimension to be conformable. Adding two vectors a and b
together amounts to adding the 8th element of a to the 8th element of b for all 8 = 1, . . . , =:

a + b =


01

02
...

0=


+


11

12
...

1=


=


01 + 11

02 + 12
...

0= + 1=


.

To understand why we de�ne addition and subtraction element-wise we need to turn to the geometric
interpretation of these concepts. Figure 1 provides a visual illustration, in R2, of vector addition (panel
a) and vector subtraction (panel b) for the two vectors:

v =

[
4
2

]
and w =

[
−1
2

]
.

The geometric illustration says, �rst move along the vector v, then move alongw . Logically, the resulting
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(a)

Figure 2: Scalar multiplication of a vector.

point should be the addition of these vectors. Of course this operation could have been conducted in
reverse, starting by moving along the vector w . Seen in this way, we can understand precisely why
addition is only conformable for vectors of the same length. For example, it makes little sense to �rst
move along a vector in R2, and then one in R3.

Vector subtraction works in a similar fashion. We �rst move along vector v and then backwards along
the vectorw . The result is shown in Figure 1 (panel b).

Matrix addition is de�ned equivalently. In order to add two matrices G and H we add the 8 9th element
of G to the 8 9th element of H for all 8 = 1, . . . , = and 9 = 1, . . . , ? :

G + H =


011 012 . . . 01?

021 022 . . . 02?
...

...
. . .

...

0=1 0=2 . . . 0=?


+


111 112 . . . 11?

121 122 . . . 12?
...

...
. . .

...

1=1 1=2 . . . 1=?


=


011 + 111 012 + 112 . . . 01? + 11?

021 + 121 022 + 122 . . . 02? + 12?
...

...
. . .

...

0=1 + 1=1 0=2 + 1=2 . . . 0=? + 1=?


.

Scalar multiplication of a vector by a constant is also de�ned element-wise. A representation of this is
shown in Figure 2. Geometrically this shows how one may consider the product 2w as saying move
along the vectorw and then move in the same direction, for the same length, once again.

If we multiply a matrix (or a vector) by a constant 2 ∈ R, then we multiply each element by that scalar

9



such that for a matrix G ∈ R=×? and a scalar 2 ∈ R,

2G =


2011 2012 . . . 201?

2021 2022 . . . 202?
...

...
. . .

...

20=1 20=2 . . . 20=?


.

We focus exclusively on the properties of matrix scalar multiplication, but these carry over to the vector
case without loss of generality.

Properties 1 (Matrix addition). For three conformable matrices G, H and I :

(i) G + H = H +G;

(ii) 2 (G + H) = 2G + 2H, for any 2 ∈ R;

(iii) G + (H + I) = (G + H) + I .

Exercise 2.3. Show the three properties above.

Exercise 2.4. Show that (G + H) ′ = G′ + H′ for any two conformable matrices G and H.

Example 2.6. An input-output matrix (example 2.1) may also be adapted to show the use of vector
addition. Converting the columns of an input-output matrix to vectors we have that total (internal)
demand, d, for goods produced by each sector of the economy is given as the row sum.

d =


0.2
0.3
0.3

 +

0.05
0.5
0.1

 +

0.01
0.1
0.1

 =


0.26
0.9
0.5

 .
The impact of scalar multiplication may also be shown here. Suppose the size of (internal) demand from
the manufacturing industry were to half, as it becomes more productive. The impact on internal demand
may be calculated by computing a new vector, f , given as

f =


0.2
0.3
0.3

 + 0.5


0.05
0.5
0.1

 +

0.01
0.1
0.1

 =


0.2
0.3
0.3

 +

0.025
0.25
0.05

 +

0.01
0.1
0.1

 =


0.235
0.65
0.45

 .
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2.3.2 Vector multiplication

First, consider the vector case. When talking about multiplying two vectors, we usually mean the inner
product (or dot product). For two vectors a and b the inner product is de�ned as follows

a · b :=
=∑
8=1

0818 .

Hence, both vectors need to be of the same dimension in order to be conformable. Often, you will also
see the notation: a′b or 〈a, b〉.

Properties 2 (Inner product). For three conformable vectors a, b and c :

(i) a · b = b · a;

(ii) a · (b + c) = a · b + a · c ;

(iii) (21a) · (22b) = 2122(a · b), for any 21, 22 ∈ R.

Exercise 2.5. Show the three properties above.

The notion of an inner product allows us to compute the Euclidean norm of a vector1

‖a‖ =
√
a · a =

√√
=∑
8=1

02
8
,

or the Euclidean distance between two vectors

‖a − b ‖ =
√
(a − b) · (a − b) =

√√
=∑
8=1
(08 − 18)2.

Example 2.7. A �rm demands a number of inputs, x , in order to produce output. At given market
prices, p, we may compute total costs, c , for the �rm.

c = p · x =

=∑
8=1
p8x8 = ?1G1 + · · · + ?=G= .

2.3.3 Geometric interpretation of the dot product (∗)
These arguments are taken from Binmore and Davies (2002). Consider any triangle, with lengths 0, 1
and 2 , as shown in Figure 3, panel (a). The generalised Pythagorean theorem may be used to give a
relationship between the length of the sides and one of the angles. In particular the cosine rule state

1This is not the only way to de�ne the norm of a vector, but probably the one you are the most familiar with. If you want
to know more look up “ℓ? -norms”.
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Figure 3: (a) Generalised Pythagorean theorem; (b) Geometric dot product.

that:

22 = 02 + 12 − 201 cosk .

Now, instead consider the same vector space we used above, with vectors v =

[
1
2

]
and w =

[
2
1

]
. We

are able to construct a triangle by moving the position of the composite vector v −w , and considering
the angle, \ , between the vectors. This is shown in Figure 3, panel (b). In this case the cosine rule
becomes:

‖v −w ‖2 = ‖v‖2 + ‖w ‖2 − 2‖v‖‖w ‖ cos\,

where we restrict 0 ≤ \ ≤ c . Using the de�nition of the dot product we may expand this expression to
show:

‖v −w ‖2 = 〈v −w, v −w〉,

‖v −w ‖2 = 〈v, v〉 − 〈w, v〉 − 〈v,w〉 + 〈w,w〉,

‖v −w ‖2 = ‖v‖2 + ‖w ‖2 − 2〈v,w〉,

and hence by comparison to above:

‖v‖2 + ‖w ‖2 − 2‖v‖‖w ‖ cos\ = ‖v‖2 + ‖w ‖2 − 2〈v,w〉,

cos\ =
〈v,w〉
‖v‖‖w ‖ ,

for 0 ≤ \ < c .

Heuristically, in R2, this means that:
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(i) Whenever v ·w > 0 the two vectors have “similar” directions, as the angle between them satis�es
0 < \ < c

2 ;

(ii) Whenever v · w < 0 the two vectors have “dissimilar” directions, as the angle between these
vectors satis�es c

2 < \ < c ;

(iii) Whenever v ·w = 0 the two vectors are perpendicular as the angle between them is \ = c
2 .

2.3.4 Matrix multiplication

There are multiple ways to de�ne the notion of multiplication for matrices. Let us �rst review the
“standard” way; the one you are all probably most familiar with. Let G and H be matrices of order = × ?
and : ×< respectively. If ? = : then G and H are conformable to matrix multiplication. Let

I = GH :=



∑:
B=1 01B1B1

∑:
B=1 01B1B2 . . .

∑:
B=1 01B1B<∑:

B=1 02B1B1
∑:

B=1 02B1B2 . . .
∑:

B=1 02B1B<
...

...
. . .

...∑:
B=1 0=B1B1

∑:
B=1 0=B1B2 . . .

∑:
B=1 0=B1B<


,

where I is an = ×< matrix. The 8 9th element of I is the nothing else than the inner product between
the 8th row of G and the 9th column of H.

(I)8 9 := a8 · b 9 :=
:∑
B=1

08B1B 9 .

In general, GH ≠ HG. Indeed, HG is not even de�ned unless = =< and in that case it is a : × ? matrix.
Matrix multiplication does obey the following properties.

Properties 3 (Matrix multiplication). For three conformable matrices G, H and I :

(i) G(H + I) = GH +GI ;

(ii) (G + H)I = GI + HI ;

(iii) G(HI) = (GH)I = GHI ;

(iv) 2 (GH) = (2G)H = G(2H);

(v) (GH) ′ = H′G′.

Property (iii) means that you can multiply HI �rst or GH �rst.2 To see where this is useful: consider a
square matrix G, then G2G = GG2. By induction, G?G = GG? such that matrix powers follow the same

2The proof is a little awkward, but if you are curious, refer to the “hints” in problem 2.4.37 of Strang (2009).
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rule as the real numbers:

G? = G · · ·G︸  ︷︷  ︸
? factors

(G?) (G@) = G?+@ (G?)@ = G?@ .

The ability to break up these multiplications may have computational bene�ts.

Exercise 2.6.

(i) Prove property (v) above. Using this, or otherwise, prove that (GHI) ′ = I ′H′G′.

(ii) Under what condition is (GH) ′ = G′H′?

(iii) Find an example of two distinct matrices G and H such that GH = HG.

Exercise 2.7. Consider the matrices: G is 3 × 5, H is 5 × 3, I is 5 × 1 and � is 3 × 1. Which of the
following matrix operations are allowed?

(i) HG;

(ii) GH;

(iii) GHI ;

(iv) JHG;

(v) G(H + I).

Exercise 2.8. Let

G =

[
1 2 3
4 5 6

]
and H =

[
4 5 6
1 2 3

]
.

Compute GH′, HG′, G′H and H′G.

Exercise 2.9. For square matrices G and H, which of the following statements are true, and why?

(i) (G + H)2 = (H +G)2;

(ii) (G + H)2 = G2 + 2GH + H2;

(iii) (G + H)2 = G(G + H) + H(G + H);

(iv) (G + H)2 = (G + H) (H +G);

(v) (G + H)2 = G2 +GH + HG + H2.

Exercise 2.10. For square matrices G and H, which of the following statements are true, and why?

14



(i) (G − H)2 = (H −G)2;

(ii) (G − H)2 = G2 − H2;

(iii) (G − H)2 = G2 − 2GH + H2;

(iv) (G − H)2 = G(G − H) − H(G − H);

(v) (G − H)2 = G2 −GH − HG + H2.

There are three other ways to view matrix multiplication that all yield the same result. Let G be an = × ?
matrix and let H be a ? ×< matrix.

(1) Matrix G times columns of H: each column of GH is a linear combination of the columns of G such
that:

GH =


G

©­­­­­«

����
b1����

ª®®®®®¬
G

©­­­­­«

����
b2����

ª®®®®®¬
· · · G

©­­­­­«

����
b<����

ª®®®®®¬

,

where b 9 is the 9th column of H.

(2) Rows of G times matrix H: each row of GH is a linear combination of the rows of H such that:

GH =



(� � � � a1 � � � � )
H(� � � � a2 � � � � )
H

...(� � � � a= � � � � )
H


,

where a8 is the 8th row of G.

(3) Block matrix multiplication: each block of I is the sum of block-rows of G times block-columns of
H

GH =

[
G11 G12

G21 G22

] [
H11 H12

H21 H22

]
=

[
G11H11 +G12H21 G11H12 +G12H22

G21H11 +G22H21 G21H12 +G22H22

]
.

Example 2.8. As an important special case, let the blocks of G be its ? columns and the blocks
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of H be its ? rows, then GH is the sum of the columns of G times the rows of H :

GH =



����
a1���� . . .

����
a?����




� � � � b1 � � � �

...� � � � b? � � � �


=



����
a1����


[� � � � b1 � � � � ]

+ · · · +



����
a?����


[� � � � b? � � � � ]

=

[
a1 . . . a?

] 
b1

...

b?

 ,
where a8 is the 8th column of G and b8 is the 8th row of H. Setting the above example aside, block
matrices arise naturally in many circumstances. In particular, matrices with identity matrices
as their blocks are frequently encountered. Then, it can be much easier to work with the blocks
rather than the entire matrix.

Exercise 2.11. Which rows or columns or matrices do you multiply to �nd

(i) the third column of GH;

(ii) the �rst row of GH;

(iii) the entry in row three, column 4 of GH;

(iv) the entry in row 1, column 1 of IJK .

Exercise 2.12. An econometrician collects data on the number of years of education and the marital
status of = di�erent individuals. They organise the data for the 8th individual as a 2 × 1 vector x8 and
arranges these = 2-dimensional vectors into an = × 2 matrix ^ . Show that ^ ′^ =

∑=
8=1 x8x

′
8 .

Exercise 2.13. The econometrician also collects income data on the same = individuals. Let ~ be the
= × 1 vector with 8th element ~8 . Show that ^ ′~ =

∑=
8=1 x8~8 .

Exercise 2.14. Suppose that for every 8 = 1, . . . , =, the econometrician applies a weight 1/f8 to the 8th
observation and arranges these = 2-dimensional observations into a matrix ` of order = × 2 such that
the 8 9th element of ` is (^ )8 9/f8 . Let ! be the diagonal matrix with (!)88 = f2

8 . Show that

` ′` =

=∑
8=1
(x8/f8) (x8/f8) ′ =

=∑
8=1
x8x
′
8 /f2

8 = ^ ′!−1^
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and

=∑
8=1
(x8/f8)~8/f8 =

=∑
8=1
x8~8/f2

8 = ^ ′!−1~.

Exercise 2.15. Multiply a 3 × 3 matrix G and O3 using columns of G times rows of O3.

Exercise 2.16. Multiply GH below using columns times rows:

GH =


1 0
2 4
2 1


[
3 3 0
1 2 1

]
=


1
2
2


[
3 3 0

]
+ = .

Example 2.9. Again returning to the input-output matrix described earlier (exercise 2.1). We may
recreate the increase in productivity of the manufacturing sector using a matrix, Y . We translate the
quantity of each input required into a new production matrix in which manufactured goods require half
the number of inputs as previously stated. This translation of the system may be written as

G =


0.2 0.05 0.01
0.3 0.5 0.1
0.3 0.1 0.1

 , Y =


1 0 0
0 0.5 0
0 0 1

 where H = GY =


0.2 0.025 0.01
0.3 0.25 0.1
0.3 0.05 0.1


such that the internal demand, given as the row sum, is as calculated above.

2.4 Matrices as operators

Another way to view matrices is as linear operators, which can be made to act through matrix multiplic-
ation. The linear operator G (a matrix) acts upon an input which is either a vector x or a matrix H and
yields another vector Gx or matrix GH.

Example 2.10. Consider the matrix

G =

[
0 1
1 0

]
.

This matrix is called a permutation matrix and it acts on a vector x according to

x =

[
G1

G2

]
⇒ b = Gx =

[
G2

G1

]
The linear operator G permutes the elements of x .
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De�nition 10. A permutation matrix is a matrix obtained by reordering the rows of the identity matrix.

Exercise 2.17. Construct all the permutation matrices of order = = 3. How many permutation matrices
of order = = 4 are there?

Example 2.11. In Figure 4, we plot 101 points on a circle with radius 2 and use the matrix

G =

[
2 1
1 2

]
to map these to 101 points on an ellipse. The matrix G is an operator and H is the 2 × 101 matrix of
coordinates on the circle. I = GH produces a 2 × 101 matrix of coordinates on the ellipse.

To understand what happened, we need to consider each of the points in the original circle, and
decompose these into their corresponding (G,~)-coordinates. Here the matrix G, above tells us that the
G-coordinate should be mapped to the vector

x̂ =

[
2
1

]
while the ~-coordinate should be mapped to the vector

~̂ =

[
1
2

]
A graphical representation of this is shown in Figure 4 (panel c).

Exercise 2.18. Suppose you are given 101 points on the surface of a sphere. What is the dimension of
the matrix you would require in order to map those points to 101 points on the surface of a 3-dimensional
ellipsoid?

Exercise 2.19. Consider the matrix

^ =



G11 G12 G13

G21 G22 G23

G31 G32 G33

G41 G42 G43

G51 G52 G53


.
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(a) Initial Circle.

-5 0 5
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0

5

(b) Resultant Ellipse.

-5 0 5
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0

5

(c) Transformation of single point.

Figure 4: Panel (a) shows 101 randomly drawn points from a circle with radius 2 and the origin as centre;
Panel (b) points on circle mapped into an ellipse by the linear transformation G; Panel (c) shows how
this may be operation may be interpreted point-by-point.
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Construct a matrix G such that

G^ =


G21 − G11 G22 − G12 G23 − G13

G31 − G21 G32 − G22 G33 − G23

G41 − G31 G42 − G32 G43 − G33

G51 − G41 G52 − G42 G53 − G43


.

2.4.1 Elementary matrices

Certain permutations of the identity matrix have particularly simple interpretations as operators. These
matrices can be quite useful in statistics for analysing the e�ects on various statistical procedures of,
for instance, measurement error or logarithmic transformations. We will call such matrices elementary

matrices.

De�nition 11. An elementary matrix, K , is a matrix which di�ers from the identity matrix by a single
row operation. Row operations refer to:

(i) Row interchanging. K8 9 will denote the identity matrix with rows 8 and 9 interchanged;

(ii) Row multiplication. K8 (W) will denote the identity matrix whose 8th row is multiplied by W ≠ 0;

(iii) Row addition. K8 (W | 9) will denote the identity matrix whereW times row 9 is added to a row 8 (8 ≠ 9 ).

Example 2.12. For = = 3, consider

K13 =


0 0 1
0 1 0
1 0 0

 K2(7) =

1 0 0
0 7 0
0 0 1

 K3(5|2) =

1 0 0
0 1 0
0 5 1

 .
Elementary matrices satisfy the following.

Properties 4 (Elementary matrices). For an elementary matrix:

(i) K ′8 9 = K8 9 ;

(ii) K ′8 (W) = K8 (W);

(iii) K ′8 (W | 9) = K 9 (W |8);

The proof of these results can be found in exercises 6.4 and 6.5 in Abadir and Magnus (2005, p. 134).

It may be possible to decompose a more complicated matrix into the product of elementary matrices.
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Example 2.13. Consider the 3 × 3 matrix, G, which initially appears di�cult to interpret

G =


2 2 0
0 1 0
0 0 1


The matrix Gmay be decomposed into a series of two steps. First add the �rst row to the second and
then double the �rst row. As such we have that

G =


2 2 0
0 1 0
0 0 1

 =


2 0 0
0 1 0
0 0 1



1 1 0
0 1 0
0 0 1

 = K1(2)K1(1|2) .

such that G is the product of two elementary matrices.

Exercise 2.20. Decompose the following matrices into the product of series of elementary matrices
and state the operations each matrix represents.

G =

[
1 0
0 4

]
, H =


1 0 0
0 0 0
0 1 1

 , I =


1 0 1 0
0 0 1 0
0 1 0 0
0 0 0 3


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3 Systems of linear equations

3.1 Linear combinations

De�nition 12 (Linear combination). A linear combination of vectors is the sum of a scalar multiple of
each vector.

Example 3.1. A linear combination of ? vectors v1, . . . , v? may be written as

21v1 + . . . + 2?v? ,

where 28 ∈ R for 8 = 1, . . . , ? .

In light of example 3.1 adding v andw is equivalent to taking a linear combination 2v +3w with 2 = 3 = 1.
Other special linear combinations are

(i) 1v + (−1)w is the di�erence of vectors, as depicted in Figure 1 (b);

(ii) 0v + 0w = 0;

(iii) 2v + 0w is a stretch or contraction of v. (Scalar multiplication).

Exercise 3.1. Let u, v and z be vectors of the same order. Show that:

(i) u + v = v + u;

(ii) (u + v) + z = v + (u + z).

Exercise 3.2. For vectors u and v of the same order and scalars 2 and 3 . Show that

(i) (2 + 3) (u + v) = 2v + 2u + 3v + 3u;

(ii) (Harder) the zero vector is uniquely determined by the condition that 20 = 0 for all scalars 2 ∈ R.

We will use these linear combination to rewrite systems of linear equations, which are of interest in
many economic applications. For example, consider a system with three linear equations and three
unknowns.

G + 2~ + 3I = 6

2G + 5~ + 2I = 4

6G − 3~ + I = 2
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
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


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x

Figure 5: graphical representation of the three vectors in the system.

Notice, that we can write this system as a linear combination


1
2
6

 G +


2
5
−3

 ~ +

3
2
1

 I =

6
4
2

 ,
or even more compactly in the form Gx = b , where

G =


1 2 3
2 5 2
6 −3 1

 , x =


G

~

I

 and b =


6
4
2

 .
Hence, Gx is a linear combination between the columns of G weighted by the scalar components of x .
We wish to �nd the G , ~ and I that solve the above simultaneous equations.

A way to visualise the system is to plot the three equations in G,~, I-space, with the columns of G
providing the coordinates. Each equation in the system de�nes a plane in G,~, I-space. Two planes meet
in a line, and three planes meet at a point. The coordinates of this point provide the values of G , ~ and I
that solve our system.

In the exercises below you may assume that a unique solution exits.

Exercise 3.3. Solve the system above.

Exercise 3.4. Write the following system in matrix form and draw the corresponding column picture.

23



By simple inspection, identify the x vector that solves the system

2G − ~ = 0

−G + 2~ = 3.

Exercise 3.5. Write the following system in matrix form and draw the corresponding column picture.
By simple inspection, identify the x vector that solves the system

2G − ~ = 0

−G + 2~ − I = −1

−3~ + 4I = 4.

3.2 Linear dependence and rank

Up to now, we have taken for granted that a unique solution to a system of equations exists. We will
provide conditions under which the existence of a unique solution for x is guaranteed. The existence
and uniqueness of a solution to a system of linear equations may be ascertained using a quantity called
the rank of a matrix. Central to the rank of a matrix is the linear (in)dependence of a set of vectors.

De�nition 13 (Linear dependence). A set of vectors {v1, . . . , v? }with v8 ∈ R= is called linearly dependent

if there exits scalars 21, . . . , 2? not all zero such that

21v1 + · · · + 2?v? = 0.

Conversely, if no such scalars exist then the set of vectors is called linearly independent.

Exercise 3.6. Consider the following sets of vectors, u, v and w and state whether they are linear
independent. If they are linearly dependent write down a set of associated scalars 21, 22, 23 to show this.

(i) u =

[
1
1

]
, v =

[
0
2

]
andw =

[
1
2

]
;

(ii) u =


0
0
1

 , v =


0
1
0

 andw =


1
0
0

 ;

(iii) u =


1
2
3

 , v =


2
4
6

 andw =


1
0
0

 ;

(iv) u =


1
4
5

 , v =


1
1
0

 andw =


3
6
8

 ;
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(v) u =


1
3
−1

 , v =


3
7
−7

 andw =


−1
−1
5

 ;

(vi) u =


1
2
−1

 , v =


2
2
−4

 andw =


1
2
3

 .

Exercise 3.7. Let x , ~ and z be linearly independent vectors of order =, show that (x +~), (x + z), and
(~ + z) are also linearly independent.

Exercise 3.8. Let {v1, . . . , v? } be a set of linearly independent vectors. Consider another vector v such
that the vectors in {v1, . . . , v? , v} are linearly dependent. Show that v can be expressed as a unique linear
combination of v1, . . . , v? .

De�nition 14. The column rank of a matrixG is the maximum number of linearly independent columns
of G. Likewise, the row rank is the maximum number of linearly independent rows.

Theorem 1 (Rank theorem). The column rank and row rank of any matrix G ∈ R=×? are equal.

Proof. See exercise 4.5 in Abadir and Magnus (2005, p. 77). �

From Theorem 1 it readily follows that the concept of rank in unambiguous. Therefore, we will just refer
to it as rank, denoted by rk, and drop the reference to “column” and “row” unless absolutely necessary.

Properties 5 (Rank). For two conformable matrices G and H:

(i) 0 ≤ rkG ≤ min{=, ?};

(ii) rkG = rkG′;

(iii) rkG = 0 if and only if G = U=×? ;

(iv) rk O= = =;

(v) rk(2G) = rkG, for any 2 ∈ R;

(vi) rk(G + H) ≤ rkG + rkH;

(vii) rk(G − H) ≥ | rkG − rkH |;

(viii) rk(GH) ≤ min{rkG, rkH}.

A matrix that has rank min{=, ?} is said to be full of rank. Otherwise, we say that the matrix is rank
de�cient.

25



Example 3.2.

rk

[
1 2
2 4

]
= 1 whilst rk

[
1 0
0 2

]
= 2.

Example 3.3.

(i) rk


1 2 4
2 4 8
3 6 12

 = 1, (ii) rk


1 2 0
2 4 7
3 6 2

 = 2, (iii) rk


1 2 0
2 3 7
3 3 2

 = 3, (iv) rk


2 0
3 7
3 2

 = 2.

The matrices (i) and (ii) are rank de�cient, whilst (iii) and (iv) are full rank.

Exercise 3.9. Find the rank of the following matrices

(i) G =


0 3 0
2 0 0
0 0 7

 , (ii) H =


1 0 2 1
0 2 4 2
0 2 2 1

 , (iii) I =


2 −1 3
1 0 1
0 2 −1
1 1 4


, (iv) J =


1 4 0
0 3 12
0 2 8

 .

We will now use the concept of rank to determine whether a system of equations has a solution. First,
consider the following example.

Example 3.4. Consider the system of equations Gx = b given by
1 1 2
2 1 3
3 1 4
4 1 5



G1

G2

G3

 =


11

12

13

14


.

Does Gx = b have a solution for every possible b? The answer is no, but there are some vectors b that
we can solve for, for instance:

(i) b = (0, 0, 0, 0) ′⇒ x = (0, 0, 0) ′

(ii) b = (1, 2, 3, 4) ′⇒ x = (1, 0, 0) ′

(iii) b = (1, 1, 1, 1) ′⇒ x = (0, 1, 0) ′

(iv) b = (2, 3, 4, 5) ′⇒ x = (0, 0, 1) ′

Whenever b is a linear combination of the columns of G, the system admits at least one solution.
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Formally, this requires that rk(G|b) = rkG, or

rk


1 1 2 11

2 1 3 12

3 1 4 13

4 1 5 14


= rk


1 1 2
2 1 3
3 1 4
4 1 5


.

The condition for the existence of at least one solution to a system of linear equations is that the rank of
the coe�cient matrix is equal to the rank of the augmented matrix, G|b , where the augmented matrix is
the coe�cient matrix with b attached as an extra column.

However, this still does not guarantee the uniqueness of the solution. For a unique solution, the coe�-
cient matrix Gmust be full column rank, otherwise there are in�nitely many solutions.

Example 3.5. Consider the previous system, but now look at a particular b vector
1 1 2
2 1 3
3 1 4
4 1 5



G1

G2

G3

 =


0
0
0
0


.

Does Gx = 0 have a solution? It has many, for example:

(i) x = (1, 1,−1) ′

(ii) x = (2, 2,−2) ′

In fact, it has in�nitely many solutions, all of the form x = (2, 2,−2) ′ for any 2 ∈ R.

Example 3.6. Similarly, x = (1, 0, 0) ′ solves
1 1 2
2 1 3
3 1 4
4 1 5



G1

G2

G3

 =


1
2
3
4


,

but so does any x of the form

x =


1 + 2
2

−2

 ,
where 2 ∈ R.

The above examples illustrates how a system of equations with a column rank de�cient coe�cient
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matrix has in�nitely many solutions.

For an =×? matrix G, a ?-vector x and an =-vector b , the four possible scenarios are stated here without
proof:

(i) rkG = = = ? (A is square and invertible) Gx = b has one solution
(ii) rkG = = and rkG < ? (A is short and wide) Gx = b has∞ solutions

(iii) rkG < = and rkG = ? (A is tall and thin) Gx = b has 0 or 1 solution
(iv) rkG < min{=, ?} (A is not full rank) Gx = b has 0 or∞ solutions.

Note that, in the box above, the �rst three situations (i), (ii) and (iii) refer to a settings where the matrix
G is full rank. In case (ii) and (iii) the matrix G is not square. The �nal case, (iv), refers to any situation
where the matrix G is not full rank.

Exercise 3.10. Let G be an = ×? matrix. Suppose you know that there exists an = × 1 vector a such that
if a is added as an additional column to G, the rank of increases by 1, i.e. rk(G|a) = rk(G) + 1. Show
that this implies the rows of G are linearly dependent. Hint: prove by contradiction.

Exercise 3.11. Show that it is not true in general that rkGH = rkHG for two square matrices G and H.

3.2.1 Application: complete asset markets

The concepts of linear dependence and rank are widely used in both �nance and economics when
contemplating the �nancial structure of the economy, and in particular the concept of complete asset
markets.

De�nition 15 (Complete asset markets). Asset markets are said to be complete when the payo� vectors
of available assets span all states of nature (i.e. the payo� matrix is full column rank).

Example 3.7. Suppose a discrete number, =, of possible states of nature exist in the future. Financial
assets each pay out di�erent amounts for each state. Suppose there are ? possible �nancial assets to
purchase. This information may be summarised in a returns matrix, X.

X =

Asset 1 Asset p


State 1 A11 . . . A1?
...

. . .
...

State = A=1 . . . A=?
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As long as rk X = =, any consumer is able to use a combination of assets to purchase any desired level of
consumption across states of nature.

Exercise 3.12. Suppose two states of nature exist ( ∈ {Rain, Sun}, such that = = 2. Two �nancial assets
exist, one which pays out 2 units in rain and another which pays out 1 unit in any state of the world. By
considering the returns matrix, X, argue why �nancial markets are complete. If a household desires 4
units of consumption in the sunny state, but none when it rains, what are the quantities of each asset
they much purchase for their portfolio?
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4 Square matrices

From Section 2.2 we know that a square matrix is one whose row and column dimension are the same.
Throughout this section, we will discuss concepts which apply uniquely to such matrices. During your
course you will encounter these regularly.

4.1 Determinant

The determinant is a single value associated with a square matrix. It has several uses and here we
will focus on just a few which will be discussed in Sections 4.3 and 4.4. Before we can introduce the
determinant, we need to know what a minor of a square matrix is.

De�nition 16 (Minor). The 8, 9-minor,"8 9 , of an =×= matrixG is the determinant of the (=−1) × (=−1)
submatrix created by deleting the 8th row and 9th column of G.

Example 4.1. The 1, 1-minor of[
0 1

2 3

]
,

is "11 = det[3] = 3 . Similarly, "12 = 2 , "21 = 1 and "22 = 0.

De�nition 17 (Determinant by cofactor expansion). The determinant of a square =×= matrixG de�ned
by the cofactor expansion is

detG :=
=∑
8=1
(−1)8+908 9"8 9 ≡

=∑
9=1
(−1)8+908 9"8 9 , (1)

where the left-hand side of the equivalence is for �xed 9 and the right-hand side is for �xed 8 .

The de�nition above states that we can compute the determinant by expanding in cofactors, (−1)8+9"8 9 ,
either along a �xed row (�xed 8) or column (�xed 9 ).

Example 4.2. Consider again the 2 × 2 matrix

G =

[
0 1

2 3

]
.

Use de�nition 17 by expanding along the �rst column (�x 9 = 1),

detG = (−1)1+1011"11 + (−1)2+1021"21

= 03 − 12.
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You can try by yourself to expand along any other column or row and you should get the same answer.

Example 4.3. Consider again the 3 × 3 matrix

G =


011 012 013

021 022 023

031 032 033

 .
Expand along the �rst row (�x 8 = 1) such that

detG = (−1)1+1011

�����022 023

032 033

����� + (−1)1+2012

�����021 023

031 033

����� + (−1)1+3013

�����021 022

031 032

�����
= 011(022033 − 023032) − 012(021033 − 023031) + 013(021032 − 022031)

= 011022033 − 011023032 − 012021033 + 012023031 + 013021032 − 013022031.

Applying the following properties will make your life easier when computing determinants.

Properties 6 (Determinant). For two = × = matrices G and H:

(i) det O= = 1;

(ii) detG′ = detG;

(iii) detG−1 = (detG)−1;

(iv) detGH = detGdetH;

(v) det(2G) = 2= detG, for any 2 ∈ R;

(vi) for a lower or upper triangular matrix, including a diagonal matrix, G

detG =

=∏
8=1

088 ,

(vii) the determinant changes signs when two rows of G are interchanged;

(viii) subtracting a multiple of one row of G from another leaves detG unchanged;

(ix) if G has a row of zeros then detG = 0;

(x) the determinant is a function of each row separately, i.e.����������
2011 2012 . . . 201=

021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� = 2
����������
011 012 . . . 01=

021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

����������
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and ����������
011 + 0′11 012 + 0′12 . . . 01= + 0′1=
021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� =
����������
011 012 . . . 01=

021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� +
����������
0′11 0′12 . . . 0′1=
021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� .

Remark. By property (ii), all the results above still hold when changing “row” to “column”.

De�nition 18. A singular matrix is a square matrix whose determinant is zero.

Exercise 4.1. Evaluate the determinants of the following matrices using the cofactor expansion method,
along an appropriate row or column

G =


2 5 1
1 0 2
7 1 1

 , H =


7 5 2 3
2 0 0 0
11 2 0 0
23 57 1 −1


, I =


1 2 1 0
3 2 1 0
0 1 6 5
0 1 1 1


, J =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


, K =



0 0 0 0 0 1
0 0 0 0 3 2
0 0 0 2 9 3
0 0 1 0 7 4
0 6 9 8 7 5
1 3 4 2 9 6


,

L =


3 C −2
−1 5 3
2 1 1

 .

Exercise 4.2. Using property (vii), prove that if two rows of a matrix G are equal then detG = 0. Hint:
proof by contradiction by supposing that G has two equal rows, but 34C (�) ≠ 0.

Exercise 4.3. Prove property (viii) by using the result from exercise 4.2 and property (x). Hint: Use both
parts of property (x) to separate the relevant determinant into two components and apply exercise 4.2.

Exercise 4.4. Prove property (ix) by using property (x).

Exercise 4.5. Prove or disprove the statement: det(G + H) = detG + detH.
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Exercise 4.6. By considering the matrices

G =

[
1 0
0 0

]
and H =

[
0 0
3 4

]
and the properties of determinants, show that GH = U does not imply that either G or H is the zero
matrix, but that it does imply that at least one of them is singular.

4.1.1 Geometry of the determinant (∗)
The determinant of a matrix may look like a completely abstract concept, but it has a clear geometric
interpretation. A generalisation of a parallelogram in =-dimensional Euclidean space is called a par-
allelepiped. It turns out that the volume of a parallelepiped, + , with as edges the vectors v1, . . . , v=

is

+ = | det(v1, . . . , v=) |.

In the case of a two dimensional matrix,

G =

[
4 −1
2 2

]
,

this claim may be veri�ed diagrammatically, as shown in Figure 6. Notice the vectors v =

[
4
2

]
and

v =

[
−1
2

]
are the same vectors as in Figure 1 (a).

Figure 6: The absolute value of the determinant of the matrix with columns v andw is the area of the
parallelogram spanned by these vectors.

Similarly, when this matrix is viewed as a basis of R2, we observe that the determinant is a useful way
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to summarise the relative area spanned by the set of basis vectors. This example is therefore shown as
the di�erence between the standard basis, displayed in Figure 7, and the alternative basis, displayed in
Figure 8.

Intuitively, we realise that it will be useful to know how much area in the standard basis translates to
area in the alternative. The answer is precisely given by the determinant. Any unitary square in the
standard basis is mapped into a square of size det(G) = 10 in the alternative.

Figure 7: Standard basis Figure 8: Alternative basis

The alternative basis arises from using the vectors in the columns of matrix G as a basis of R2.

4.2 Trace

Another value associated with square matrices is the trace. It is de�ned as follows.

De�nition 19. The trace of an = × = matrix G is the sum of the diagonal elements

trG =

=∑
8=1

088 .

It satis�es the following properties.

Properties 7. For two conformable matrices G and H:

(i) tr(G + H) = trG + trH;

(ii) tr(2G) = 2 trG, for any 2 ∈ R;

(iii) if G ∈ R=×? and H ∈ R?×= , then

trGH = trHG.

(iv) tr(G′) = trG;
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(v) tr 2 = 2 , for 2 ∈ R.

Properties (i) and (ii) make the trace a linear operator. Furthermore, in property (iii), the matrices G and
H need not be square, nor do GH and HG need to be of the same dimension.

Exercise 4.7. Prove the properties above.

Exercise 4.8. Using property (iii), show that for three conformable matrices we have

tr(GHI) = tr(IGH) = tr(HIG) .

Exercise 4.9. Referring to your computations in exercise 2.8 show that

tr(G′H) = tr(HG′) = tr(GH′) = tr(H′G) .

4.3 Inverses

In Section 2.4 above, we discussed matrices G that operate on another matrix H to produce a new one
I through the equation GH = I . Whatever operation is performed by G can be undone by its inverse
matrix G−1 provided that such a matrix exists.

De�nition 20. A matrix G ∈ R=×= is invertible if there exists a matrix G−1 ∈ R=×= such that

G−1G = O= = GG−1.

Therefore, if GH = I , then

G−1I = G−1GH = OH = H.

Note that for rectangular matrices it cannot be true that the left inverse is equal to the right inverse; the
dimensions would not allow it. Rectangular matrices have inverses, but we do not discuss them here. If
you are interested, please look up the “Moore-Penrose inverse”.

Exercise 4.10. Show (by multiplying GG−1) that in general if G is a 2 × 2 matrix given by G =

[
0 1

2 3

]
,

and (03 − 21) ≠ 0 then G−1 = 1
03−21

[
3 −1
−2 0

]
, noting that (03 − 21) is the determinant of G.
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Exercise 4.11. Write down the inverse of the matrices

(i) G =

[
1 3
2 4

]
, (ii) H =

[
5 −3
2 1

]
, (iii) I =

[
6 1
1 2

]
.

Theorem 2. If an inverse exists, then it is unique.

Proof. Suppose not such that there exist two distinct inverses H and I for a matrix G. Then,

H = HO = H(GI)

= (HG)I

= O I = I,

a contradiction. �

Theorem 3. If there exists a non-null vector x such that Gx = 0, then G is not invertible.

Proof. Suppose not such that there exists a non-null vector x with Gx = 0 and G is invertible. By
de�nition de�nition 20, G−1Gx = x = 0, but x is non-null. Hence, a contradiction. �

By Theorem 3, singular matrices take some non-zero vector into zero. There is noG−1 which can recover
that vector.

Theorem 4. If G is an = × = invertible matrix, then the system of equations

=∑
9=1

08 9G 9 = 18 (1 ≤ 8 ≤ =),

has a unique solution for each choice of 18 .

Exercise 4.12. Use Theorem 2 [uniqueness of an inverse] to prove Theorem 4 [unique solution for each
choice of 18].

Exercise 4.13. Construct a matrixG that multiplies the vector (3,−1) ′ to produce the zero vector (0, 0) ′.
What do you notice about the matrix G? Compute its determinant.

Theorem 5. A square matrix G of order = is invertible if and only if rk(G) = =.

Proof. See exercise 4.21 in Abadir and Magnus (2005, p. 83).
�
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Corollary 5.1. A square matrix G is invertible if and only if it is non-singular.

Exercise 4.14. Consider the matrix

G =


1 2 0
2 4 7
3 6 2

 .
Show, using Theorem 5 that the matrix G is not invertible.

Theorem 6. The product GH has an inverse if and only if G and H are non-singular and of the same

dimension.

Exercise 4.15. Suppose that G and H are non-singular matrices of the same order. Show that

(GH)−1 = H−1G−1,

and thereby proving Theorem 6.

The inverse of a matrix G satis�es the following properties.

Properties 8 (Inverse). For a non-singular matrix G:

(i) (2G)−1 = (1/2)G−1, for any 2 ∈ R0;

(ii) (G′)−1 = (G−1) ′;

(iii) (G−1)−1 = G.

Exercise 4.16. Prove the properties above.

4.3.1 Computing the inverse

De�nition 20 does not immediately reveal how to compute the inverse. However, you could show that
for an arbitrary = × = matrix G, the formula for its inverse is

G−1 =
1

detG
G#, (2)

where G# is the adjoint matrix of G.

De�nition 21. The adjoint matrix of G is the transpose of its cofactor matrix (recall de�nition 16).
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Formally,

(G#)8 9 = (−1)8+9" 98 .

We see that (2) is consistent with corollary 5.1.

Exercise 4.17. Find the inverse of

(i) G =


1 1 2
2 1 2
0 1 1

 (ii) H =


2 0 0
0 2 1
0 1 1

 (iii) I =


−2 1.6 −0.4
1.6 −0.9 0.4
1.3 −1.2 1.6

 Note: Harder.

Exercise 4.18. Show that a matrix with a column (or row) of zeros is not invertible.

4.3.2 Special inverses (∗)
The inverse of elementary matrices (introduced in section 2.4.1) are particularly simple to compute, and
obey the following properties. These elementary matrices satisfy the following.

Properties 9 (Inverse of elementary matrices). For an elementary matrix:

(i) K−1
8 9 = K8 9 ;

(ii) K−1
8 (W) = K8 (W−1);

(iii) K−1
8 (W | 9) = K8 (−W | 9).

The proof of these results can be found in exercises 6.4 and 6.5 in Abadir and Magnus (2005, p. 134).

Exercise 4.19. Suppose G is invertible and you exchange its �rst two rows to obtain H. Explain why
the new matrix is invertible. How would you �nd H−1 from G−1.

4.3.3 Application: ISLM

A simple way to demonstrate how inverse of matrices may be useful in economics is to consider the
standard closed economy ISLM model. Conveniently, the equilibrium of a simpli�ed version of this
model is often expressed in linear form as the system:

. = � + � +�0, (Accounting identity)

� = U + V., (Keynesian consumption function)

� = W − X8, (Investment equation)

"0 = Y. − Z8, (Money market equilibrium)
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where . , � , � and 8 are endogenous variables, �0 and "0 are exogenous variables and U , V , W , X , Y and Z
are structural parameters of the model. Typically two policy multipliers are of interest: the Keynesian
government spending multiplier and the money multiplier. Noting that to simplify we may eliminate
consumption, � , and the system may be re-written as:


1 − V −1 0

0 1 X

Y 0 −Z



.

�

8

 =


U

W

0

 +

�0

0
"0

 , or alternatively G~ = a + x .

where~ is a vector of the endogenous variables, and x is a vector of the exogenous variables. We are able
to see immediately how computing an inverse will uncover the multipliers of interest in the form:

~ = G−1(a + x) .

To do this we proceed with the recipe, and �rstly compute the matrix of minors, S , corresponding to
the each element in the matrix G:

S =


−Z −XY −Y
Z −Z (1 − V) Y

−X X (1 − V) (1 − V)

 .
Next, we use cofactors and the transpose to convert this matrix into the adjoint matrix, G#.

G# =


−Z −Z −X
XY Z (V − 1) X (V − 1)
−Y −Y 1 − V

 .
Then calculate the determinant of the matrix

detG = (V − 1)Z − XY

Before �nally combining to give the inverse as:

G−1 =
1

detG
G# =

1
(V − 1)Z − XY


−Z −Z −X
XY Z (V − 1) X (V − 1)
−Y −Y 1 − V


Hence we may read o� the equation for output, . , in terms of exogenous variables and structural
parameters only as:

. =
Z (U + W +�0)
XY + (1 − V)Z +

X"0

XY + (1 − V)Z ,

and deduce the multipliers as:

Z

XY + (1 − V)Z and
X

XY + (1 − V)Z .
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4.4 Eigenvalues and eigenvectors

In Section 2.4, we brie�y discussed matrices as linear operators and linked matrices to functions, which
take a vector x as input and produce as output another vector Gx . In this section we are particularly
interested in vectors whose direction is invariant to the linear transformation G. This brings us to the
concepts of eigenvalues and eigenvectors.

De�nition 22. For a square matrix G, the vector x ∈ R=\{0} and the corresponding scalar _ ∈ R are
called an eigenvector and eigenvalue if they satisfy

Gx = _x . (3)

Remark. There is no reason why we should restrict the eigenvalues or eigenvectors to be real. Even
for real matrices, the eigenvalues or eigenvectors can be complex, see example 4.6. However, in this
course and the mphil programme you will not come across complex valued eigenvalues and eigenvectors
(often). Furthermore, in the de�nition above we have explicitly restricted the eigenvectors not to be the
zero vector. Of course, x = 0 always satis�es (3), but we rule out this trivial case.

De�nition 22 immediately gives us a way to �nd the eigenvalues and eigenvectors. Rewrite (3) as

(G − _O )x = 0,

then from Theorem 3 we know that the matrix G − _O needs to be singular since we have ruled out
x = 0. Hence, we can �nd the eigenvalues by solving

det(G − _O ) = 0. (4)

We refer to (4) as the characteristic polynomial. This is a polynomial in _ of order =. Hence, from the
“fundamental theorem of algebra” there are = eigenvalues, but these are not necessarily distinct. The
eigenvectors associated with each eigenvalue can then be found by solving the system in (3). From
this we can see that the eigenvectors are unique up to scaling. It is therefore natural to write down the
eigenvectors with unit length, ‖x ‖ = 1. These are called the normalised eigenvectors.

Example 4.4. Consider the permutation matrix in example 2.10. It is not di�cult to spot two vectors x
that yield Gx = _x

x =

[
1
1

]
⇒ Gx =

[
1
1

]
= x (_ = 1),

and

x =

[
−1
1

]
⇒ Gx =

[
1
−1

]
= −x (_ = −1) .

40



1

2

3

0 1 2 3

x

y

(a)

1

2

3

0 1 2 3

x

y

(b)

Figure 9: (a) 100 points on a grid in [0, 1]2; (b) 100 points in [0, 1]2 transformed by G =

[
2 1
1 2

]
. The

direction of the vectors parallel to (1,−1) ′ (green) and (1, 1) ′(orange) remains unchanged with the latter
also being scaled by a factor of 3. The other vectors (blue) change direction after a transformation by G.

Example 4.5. We can gain some intuition by looking at what the eigenvalues and eigenvectors mean
graphically. Consider the linear transformation

G =

[
2 1
1 2

]
,

which has eigenvectors

x1 =

[
1
−1

]
and x2 =

[
1
1

]
,

associated with the eigenvalues _1 = 1 and _2 = 3, respectively. It is a good exercise to see if you can �nd
these for yourself. As we can see in Figure 9, the direction of the vectors parallel to x1 and x2 remains
unchanged after a transformation by G. Furthermore, the vectors parallel to x2 are scaled by a factor
of 3, the value of _2. Whereas the direction of the vectors not parallel to either of the eigenvectors changes.

Example 4.6 (Complex eigenvalues). Consider the matrix

G =

[
6 −13
1 0

]
,

which has only real entries, but both its eigenvalues are complex. To see this,

det(G − _O ) = _(_ − 6) + 13

= _2 − 6_ + 13.
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The discriminant of this polynomial is Δ = −16, thus it has no real solutions. Hence,

_1,2 =
6 ±
√
Δ

2
= 3 ± 28 .

Exercise 4.20. Find the two eigenvalues of the matrix

H =

[
3 1
1 3

]
.

Deduce two eigenvectors of H by inspection.

Exercise 4.21. Let G be the permutation matrix in example 4.4, and write the matrix H of exercise 4.20
as H = G + 3O . Algebraically, deduce that the eigenvalues of G are three less than the eigenvalues of H
and that the eigenvectors are unchanged.

Exercise 4.22. Show that:

(i) _2 is an eigenvalue of G2;

(ii) _−1 is an eigenvalue of G−1;

(iii) _ + 1 is an eigenvalue of G + O .

Exercise 4.23. Show that the eigenvalues of idempotent matrices are either 0 or 1.

Exercise 4.24. Let

G =

[
0 1

2 3

]
.

(i) Show that det(G − _O ) = _2 − tr(G)_ + detG;

(ii) Find an expression for the two eigenvalues of G in terms of 0, 1, 2 and 3 . These characteristic
roots satisfy

(_ − _1) (_ − _2) = _2 − tr(G)_ + detG = 0,

and _1_2 = detG and _1 + _2 = trG.

4.4.1 Application: principal components (∗)
Suppose that you have a data set with ? variables and = observations on each of these variables and store
them in the = × ? matrix ^ . These data points can be plotted in R? space. A question we can ask is: “In
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which direction does the data vary the most?” To answer this, consider the empirical variance-covariance
matrix ˜̂ ′ ˜̂ /=, where ˜̂ = ^ − ¯̂ . We want to �nd the vectors which maximise this variance

max
v∈R?

v ′ ˜̂ ′ ˜̂ v subject to ‖v‖ = 1. (5)

It turns out that the solution to (5) is the eigenvector associated with the largest eigenvalue of ˜̂ ′ ˜̂ . We
refer to this as the �rst principal component. The other = − 1 principal components are the remaining
eigenvectors with the last principal component being the eigenvector associated with the smallest
eigenvalue.

Figure 10 plots the two principal components from a simulated data set with 10, 000 observations drawn
from a random vector[

-1

-2

]
∼ #

( [
1
2

]
,

[
1 −0.8
−0.8 1

] )
.

There is a very large literature on Principal Components Analysis and for those of you who are interested,
a good place to start is James et al. (2013).

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

7

Figure 10: The two principal components from a simulated dataset.

43



5 Diagonalisation and powers of G

In this section we consider one of the many useful applications of eigenvalues and eigenvectors, called
the eigendecomposition. Let W be the matrix whose columns are the eigenvectors of G. Suppose G
possesses = linearly independent eigenvectors such that W is invertible. By de�nition 22,

GW = G



����
x1���� . . .

����
x=����


=


_1

����
x1���� . . . _=

����
x=����


=



����
x1���� . . .

����
x=����



_1 0 . . . 0
0 _2 . . . 0
...

...
. . .

...

0 0 . . . _=


:= W�.

Observe that by premultiplying by W−1 we obtain

� = W−1GW .

Therefore, showing that W−1GW diagonalises G, in the sense that it produces the diagonal matrix �with
the eigenvalues _1, . . . , _= along its main diagonal. Analogously, by postmultiplying by W−1 we have the
eigendecomposition

G = W�W−1. (6)

There is a wide variety of matrix decompositions, but this decomposition is powerful enough for our
purposes and allows us to prove some interesting properties of square matrices.

Lemma 1. Let G be diagonalisable according to (6), then

detG =

=∏
8=1

_8 ,

and

trG =

=∑
8=1

_8 .

Exercise 5.1. Prove lemma 1.

Remark. You could try and prove this directly from det(G − _O ) showing that these results hold even
for matrices which are not diagonalisable through the eigendecomposition. This is slightly more involved.
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5.1 Di�erence Equations

Another interesting use for the eigendecomposition is computing powers of G. We know that the :th
power of a diagonal matrix J is

J: = diag(3:1 , . . . , 3:= ) .

From (6), it is easy to show that

G: = W�:W−1. (7)

This can lead to considerable computational improvements when : is large. Moreover, the following
result will be useful in the lectures on di�erence equations.

Theorem 7. Let G be a matrix of order = with = linearly independent eigenvectors, then G: converges to

the zero matrix if and only if the eigenvalues of G satisfy |_8 | < 1 for all 8 = 1, . . . , =.

Proof. Both directions follow easily from (7). �

Theorem 7 is important for analysing the convergence properties of certain multivariate di�erence
equations of the form

u:+1 = Gu: ,

and by recursive substitution we have

u:+1 = G
:+1u0,

for some initialisation vector u0.

5.1.1 Application: labour markets

In labour economics, the total population (labour force) of an economy may be characterised into two
states. At any given time period-C each person may be employed, 4C or unemployed, DC . The movement
between each state may also be classi�ed. The probability that a worker moves from employment
to unemployment is known as the job separation rate, B , while the probability of movement from
unemployment to employment is known as the job �nding rate, 5 . Collectively these labour market �ow
rates are often referred to as labour market ‘churn’. The dynamic relationship between these variables
may therefore be described as[

DC+1

4C+1

]
=

[
1 − 5 B

5 1 − B

] [
DC

4C

]
,
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which we will summarise in the form

uC+1 = GuC ,

An interesting policy question is therefore, given a starting composition of the labour force, u0, what
will the labour force composition look like in 2 years, u2, 5 years, u5, and in the ‘long run’? A concrete
example will help to answer these questions.3

Example 5.1. Suppose the economy currently has 10 unemployed workers and 90 employed workers.
The job separation rate is 0.05 while the job �nding rate is 0.5. We note that this infers the main matrix
of interest, Gmay be written as

G =

[
0.5 0.05
0.5 0.95

]
,

We apply the procedure and diagonalise the matrix as follows. Firstly calculate the eigenvalues and
eigenvectors of the matrix.

det(G − _O ) = 0,

(0.5 − _) (0.95 − _) − 0.025 = 0,

0.45 − 1.45_ + _2 = 0,

which infers _1 = 1 and _2 = 0.45 and in turn these imply v1 =

[
0.1
1

]
, and v2 =

[
−1
1

]
. Such that we have

G = W�W−1 =

[
0.1 −1
1 1

] [
1 0
0 0.45

] [
10
11

10
11

− 10
11

1
11

]
,

as the diagonalised form of the matrix G. Noting that we are given the initial vector, u0 =

[
10
90

]
, we may

now turn to the economics questions of interest. With the time period set to a year.

u2 = G
2u0 = W�

2W−1 =

[
0.1 −1
1 1

] [
1 0
0 0.45

]2 [
10
11

10
11

− 10
11

1
11

] [
10
90

]
=

[
9.275
90.725

]
,

u5 = G
5u0 = W�

5W−1 =

[
0.1 −1
1 1

] [
1 0
0 0.45

]5 [
10
11

10
11

− 10
11

1
11

] [
10
90

]
=

[
9.1077
90.8923

]

The behaviour of the system in the “long run” may be seen as we take the limit of the dynamic system
as C →∞ and the associated vector u∞. Having diagonalised the matrix this behaviour is easy to note,

3Notice that the matrix being used here, G, is actually known as a Markov matrix, as all entries are non-negative and each
column sum is 1.
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as the limit of each eigenvalue is take in turn. As such we have that

u∞ =

[
0.1 −1
1 1

] [
1 0
0 0

]2 [
10
11

10
11

− 10
11

1
11

] [
10
90

]
=

[
9.0909
90.9091

]
,

and we conclude that the initial unemployment rate, of 10%, was above its equilibrium value. The
dynamics clearly show a smooth transition back. A graph of this situation is shown in Figure 11.
Of course we could also have been clever in the �nal example an noted that the “long run” will be
characterised by an equation of the form

u∞ = Gu∞,

and therefore claimed that the “long run” distribution of workers between states will be the eigenvector
associated with the unitary eigenvalue.

0 1 2 3 4 5 6 7 8 9 10

9

9.1

9.2

9.3
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9.9

10

Figure 11: Transition path for the unemployment rate.

5.1.2 Application: vector autoregression

Vector autoregressions (VARs) are a popular econometrics tool, used by academics, policymakers and in
business to analyse complex economic phenomena in a time series context. The core concept required
to apply these models makes use of the diagonalised form of a matrix. A vector autoregression (VAR)
may be written in the following form

xC = GxC−1 + HeC

where xC is a vector of economic variables (data), G is a matrix of coe�cients describing the evolution of
the economy, eC represent structural economic shocks of interest and x0 = 0. A typical question is to ask
how the economy responds after a one-time impulse (typically normalised to one standard deviation)
that happens in period C = 1. This is known as an impulse response function and can be mapped quickly
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and e�ciently using the equation

xC+= = G=He1 = W�
=W−1He1

after �rst using econometric techniques to estimate the matrices of interest from the data.

5.1.3 Application: Fibonacci sequence (∗)
The following example comes from Strang (2009).

Example 5.2. The �rst 8 numbers of the Fibonacci sequence are 0, 1, 1, 2, 3, 5, 8, 13, . . . where the :th
element of the sequence can be deduced from the (: − 1)th and (: − 2)th elements as �: = �:−1 + �:−2.
One useful question to ask is: “How fast are the Fibonacci numbers growing?” The answer to this
question lies in the eigenvalues. Let

u: =

[
�:+1

�:

]
.

Then, the Fibonacci sequence satis�es

u:+1 = Gu: with G =

[
1 1
1 0

]
.

We have

det(G − _O ) = _2 − _ − 1.

Setting this to zero and solving gives

_1 =
1
2
(1 +
√

5) and _2 =
1
2
(1 −
√

5).

Since the largest eigenvalue is the one controlling the growth, the Fibonacci numbers are growing at
the rate (1 +

√
5)/2.

Exercise 5.2. Assuming you can write the initialisation vector u0 as a linear combination of the eigen-
vectors, �nd an expression for the :th element of an arbitrary sequence of the form u:+1 = Gu: .

Exercise 5.3. Using the expression you found in exercise 5.2, �nd the 100th element of the Fibonacci
sequence in example 5.2.

5.2 Symmetric and positive de�nite matrices

We know from Section 2.2 that symmetric matrices are equal to their transpose. Let us �rst remind you
what an orthogonal matrix is.
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De�nition 23. A square matrix W of order = is orthogonal if for any two columns

q′8q 9 =


0 if 8 ≠ 9

1 if 8 = 9
.

Thus, an orthogonal matrix has orthonormal columns.

Then in relation to the eigendecomposition, we have the following result for symmetric matrices.

Theorem 8 (Spectral decomposition). Let G be a symmetric = × = matrix, then there exists a matrix W

with W−1 = W ′ (i.e. W is orthogonal) and a diagonal matrix, �, with diagonal elements the eigenvalues of G

such that

G = W�W ′.

We then refer to the eigendecomposition of G as the spectral decomposition.

Proof. See exercise 7.46 in Abadir and Magnus (2005, p. 177). �

Next, we ask: “what does G > U mean?” This question is answered by the the de�niteness of a matrix
which generalises the notion of positivity and negativity to matrices. Together with the eigendecompos-
ition, the de�niteness lets us prove many interesting results.

De�nition 24 (De�niteness). A square matrix G is called positive de�nite if for any x ∈ R=\{0},

x ′Gx > 0. (8)

The matrix G is positive semi-de�nite if (8) holds with weak inequality. The notion of negative and
negative semi-de�nite is similarly de�ned by reversing the inequalities. A matrix which is neither
positive or negative de�nite is inde�nite.

De�nition 24 formalises statements like: matrix G is larger than matrix H, in the sense that G − H is
positive (semi)de�nite. Here, we will solely focus on positive (semi)de�niteness for ease of exposition.

Lemma 2. A symmetric matrix is positive de�nite if and only if all its eigenvalues are positive. Moreover,

a symmetric matrix is positive semi-de�nite if and only if all its eigenvalues are non-negative.

Proof. Left as an exercise. �
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Lemma 2 allows us to check for positive de�niteness by checking the signs of the eigenvalues. If a
symmetric matrix has two eigenvalues with di�erent signs then it is inde�nite. Some of the properties
below follow directly from this lemma and are left as an exercise.

Properties 10 (Positive de�nite). For a symmetric positive de�nite matrix G:

(i) detG > 0 such that it is also non-singular;

(ii) trG > 0;

(iii) if G ≥ U and H ≥ U , then G + H is at least positive semi-de�nite.

(iv) G > U if and only if G−1 > U .

Exercise 5.4. Show the properties above.

Exercise 5.5. Show that there exists a matrix which is both positive semi-de�nite and negative semi-
de�nite, but that a matrix cannot be positive and negative de�nite at the same time.

Exercise 5.6. Let ! be a symmetric positive de�nite matrix. Use the spectral decomposition to show
that there exists a non-singular matrix R such that ! = R′R and such that R−1 = (R′)−1. What is R−1?

Exercise 5.7. Find the ^ that solves

2^2 − 3^ + O= = U=,

where ^ is a real symmetric matrix.
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6 Vector and matrix calculus

In this section, we present a brief foray into vector and matrix calculus. Please consult other textbooks
if you want to learn more; see e.g. Abadir and Magnus (2005); Magnus and Neudecker (1999).

Broadly there are two learning objectives to this section of the course:

(i) Ability to compute the Jacobian and Hessian matrices;

(ii) Knowledge of what the Jacobian and Hessian matrices represent.

The following notation is maintained throughout: let i , f and L respectively represent scalar, vector and
matrix-valued functions possibly taking a scalar, vector or matrix as their inputs. For example,

i (G) = sin(G), i (x) =
√
x ′x, i (^ ) = det^

f (G) = (G, G − 3) ′, f (x) = Gx, f (^ ) = ^a
L (G) = GG, L (x) = xx ′, L (^ ) = ^ ′^ .

6.1 The Jacobian and the Hessian

Our �rst step in using vector and matrix calculus will be to introduce the Jacobian and Hessian matrices,
and their computation.

De�nition 25 (Jacobian matrix). Let f be an < × 1 vector function with input an =-vector x , then
de�ne the< × = Jacobian matrix as

�f (x) :=
df (x)

dx ′
=

[
m58 (x)
mG 9

]
.

This matrix collects all the �rst-order partial derivatives of the components of f into an< × = matrix.
Note that (rather unhelpfully) the literature refers to both the Jacobian matrix and its determinant as
the Jacobian.

De�nition 26 (Hessian matrix). Let i (x) be a scalar-valued function with input an =-vector x , then
the Hessian matrix is the = × = matrix of second-order partial derivatives

N (x) :=



m2i (x)
mG2

1

m2i (x)
mG1mG2

. . .
m2i (x)
mG1mG=

m2i (x)
mG2mG1

m2i (x)
mG2

2
. . .

m2i (x)
mG2mG=

...
...

. . .
...

m2i (x)
mG=mG1

m2i (x)
mG=mG2

. . .
m2i (x)
mG2

=


.

Exercise 6.1. Assume i (x) = i (G1, G2) = 2G2
1G

3
2 , �nd the Jacobian and Hessian matrix of this (scalar)

51



function (which has the vector input x =

[
G1

G2

]
).

Exercise 6.2. Assuming an input an =-vector x , �nd both the Jacobian and Hessian matrix of the scalar
function i (x) = x ′x .

Exercise 6.3. Assume f (x) =
[
G + cos(~)
~ + cos(G)

]
and �nd the Jacobian of this function.

6.1.1 Geometric interpretation of the Jacobian matrix

We already know that the Jacobian stores all of the partial derivatives of a function, when di�erentiating
with respect to a vector. It may be viewed as the ratio of an in�nitesimal change in the variables of one

coordinate system to another. You will all have already encountered the Jacobian matrix when using the
change of variable approach to integration.

Example 6.1. Consider the integral
∫ 1

0 6G2
√

2G3 + 53G . We pick an easy example, such that we already
know how to approach the answer.

Using the change of variable approach, we may transform the integral as follows. Let D = 2G3 + 5, such
that 3D = 6G23G , such that the transformed integral will be given by

∫ 7
5 D

1
23G , where we also remember

to change the limits of integration! The integral looks considerably easier.

Notice, to make this substitution we invoke the Jacobian of the problem and, in this example, we have
that 3D

3G
= 6G2.

Example 6.2. We wish to extend the approach in Example 6.1 away from the scalar setting, and will
use the function given in Exercise 6.3. The function

f (x) =
[
51

52

]
=

[
G + cos(~)
~ + cos(G)

]

may be viewed as a way to map every element in the (G,~)−coordinate system into an alternative
(51, 52)−coordinate system. In the current example we may explicitly perform this change of variables,
as shown in Figure 12, which maps a series of points to their position after the function f has been
applied.

The interpretation of the Jacobian is then more straightforward to understand. Consider a small change
in G , call this 3G . After the function, f (x), has been applied this initial change in G results in a change in
both 51 and 52 (shown in red on the Figure). Similarly, an initially small change in ~, call this 3~ will
result in a small change in both 51 and 52 (shown in blue on the Figure). The Jacobian matrix records
these changes, for any value of (G,~). We plot these as changes from the point G = [1,−3] ′.
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(a) Standard Basis (b) Non-linear Transformation

(c) Non-linear Transformation (Zoom)

Figure 12: A set of point in the (G,~)−coordinate system (a), and their equivalent position after the
function f has been applied (b).
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6.1.2 Geometric interpretation of the Hessian matrix

We now turn to the geometric representation of the Hessian matrix. As with the Jacobian, we already
know that the Hessian stores all of the second-order partial derivates of a scalar-valued function and
therefore describes the local curvature of a function. Stationary (or turning) points may be described as
(local) minimum, (local) maximum or in�ection point. By using available information in the Hessian,
we are able to identify each type of stationary point.

Example 6.3. To demonstrate how a Hessian matrix may identify di�erent types of stationary point,
we again proceed by starting with a scalar example. Consider the three functions and their associated
(scalar) Hessian matrices:

i1(G) = G2, N1(G) = 2,

i2(G) = −G2, N2(G) = −2,

i3(G) = G3, N3(G) = 6G,

Observe that the nature of the single stationary point which arises in all three cases, at G = 0, di�ers
substantially. In the �rst case (with N (G) > 0) is the stationary point is the (global) minimum point, in
the second (with N (G) < 0) it is the (global) maximum point, and in the third it is a point of in�ection
(N (G) evaluated at the stationary point G = 0 gives N (0) = 0) . These functions, and their stationary
points, are shown in Figure 14.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(x) = x2

(x) = -x2

(x) = x3

Figure 13: Three very di�erent scalar functions.

Example 6.4. Extending the analysis of Example 6.3 to additional dimensions is straightforward. We
consider the following scalar-valued functions, and their Hessians, which take the vector x = [G,~] as
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an input

i1(x) = G2 + ~2, N1(x) =
[
2 0
0 2

]
,

i2(x) = −G2 − ~2, N2(x) =
[
−2 0
0 −2

]
,

i3(x) = G3 + ~3, N3(x) =
[
6G 0
0 6~

]
,

Again we notice that the single stationary point is the same in all three cases, and arises at x =

[
0
0

]
. In

the �rst case this stationary point is the (global) minimum point, in the second it is the (global) maximum
point, and in the third it is a point of in�ection. These functions, and their stationary points, are shown
in Figure 14.

Now, as the Hessian is a matrix it may not be evaluated as being either positive or negative. However the
concepts introduced in Section 5.2 gives us a procedure which we may use to identify related properties
of the Hessian matrices, namely:

(i) �1(x) is positive de�nite. We may show this by examining the eigenvalues of the matrix

det(N1(x) − _O2) = (2 − _)2

which gives _ = 2 (twice). As _ > 0, N1(x) is positive de�nite, telling us that the function i1(x)
is convex, and we have indeed reached a (global) minimum point;

(ii) �2(x) is negative de�nite. We may show this by examining the eigenvalues of the matrix

det(N2(x) − _O2) = (−2 − _)2

which gives _ = −2 (twice). As _ < 0, N2(x) is negative de�nite, telling us that the function i2(x)
is concave, and we have indeed reached a (global) maximum point;

(iii) Finally, �3(x) evaluated at the stationary point gives �3(x) = O, with det(�3(x)) = 0. This infers

det(N3(x) − _O2) = _2

which gives _ = 0 (twice). As _ = 0, N3(x) is neither positive de�nite nor negative de�nite at the
stationary point, telling us that the function i3(x) is reaches a point of in�ection;

6.1.3 Application: cost minimisation (∗)
We may use the tools of matrix calculus along with the concepts of positive de�niteness to analyse
the solution to a cost minimisation problem. Production levels, x , are inputs to a �rms cost function,
� (x). The �rm also faces a linear production constraint � (x). For the solution to the cost-minimisation
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Figure 14: Functions associated with Example 6.4. (a) i1(x); (b) i2(x); (c) i3(x).
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problem to be well-de�ned we need to ensure the cost function is concave. It turns out that the function
will be concave if we have a positive de�nite Hessian matrix.

Example 6.5. Assume a �rm has a cost function of with two arguments, � (G,~), and must minimise
this cost function, subject to the production requirement, � (G,~) ≥ 30. Where

� (G,~) = 4G2 + 4~2 − 2G~ − 40G − 140~ + 1600,

� (G,~) = G + ~.

Before solving the constrained optimisation problem, we �rstly inspect the cost function and solve
the unconstrained cost minimisation problem. We may calculate the derivative, second derivative and
cross-derivative of each element as

m� (G,~)
mG

= 8G−2~−40,
m� (G,~)
m~

= 8~−2G−140,
m2� (G,~)
mG2 =

m2� (G,~)
m~2 = 8 and

m2� (G,~)
mG~

= −2.

This allows us to �nd the Jacobian of the problem as

�� (G,~) =
[
8G − 2~ − 40, 8~ − 2G − 140

]
Stationary points arise when �� (G,~) = 0, in this case we have a single stationary point at G = 10,
~ = 20. Whether this point represents a maximum, minimum or saddle point is yet to be determined.
The cost function will be concave if it is associated with a positive de�nite Hessian matrix, and this
point will then be the global minimum. The derivatives found earlier may be combined to show that the
Hessian of the cost function may be written as

N (G,~) =
[
m2� (G,~)
mG2

m2� (G,~)
mGm~

m2� (G,~)
m~mG

m2� (G,~)
m~2

]
=

[
8 −2
−2 8

]
.

By inspection Lemma 2 applies, as the matrix is symmetric and therefore positive de�niteness may be
determined from an inspection of the eigenvalues of the matrix. To show that the Hessian matrix is
positive de�nite, we calculate the eigenvalues and show these to be positive.

det(N (G,~) − _O2) =
�����8 − _ −2
−2 8 − _

����� = (8 − _)2 − 4 = 0, giving _ = 10 and _ = 6.

The cost function therefore has a unique minimum at its stationary point. In this problem the constraint
plays little role, as the global minimum is attainable while respecting the constraint. Figure 15 shows a
graphical representation of this minimisation problem.
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Figure 15: Cost function and constrained minimisation solution.
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A Summary of key results

For conformable matrices G, H, I and J :

(1) G = [(G)8 9 ] ⇔ G′ = [(G)98];

(2) 2G = [2 (G)8 9 ];

(3) (G + H)8 9 = (G)8 9 + (H)8 9 ;

(4) G + H = H +G;

(5) 2 (G + H) = 2G + 2H, for any 2 ∈ R;

(6) G + (H + I) = (G + H) + I ;

(7) a · b = b · a;

(8) a · (b + c) = a · b + a · c ;

(9) (21a) · (22b) = 2122(a · b), for any21, 22 ∈ R;

(10) (GH)8 9 = a8 · b 9 ;

(11) GH ≠ HG;

(12) G(H + I) = GH +GI ;

(13) (G + H)I = GI + HI ;

(14) G(HI) = (GH)I = GHI ;

(15) 2 (GH) = (2G)H = G(2H);

(16) (GH) ′ = H′G′;

(17) the rank of a matrix, rkG, is the maximum number of linearly independent rows or columns of G;

(18) 0 ≤ rkG ≤ min{=, ?};

(19) rkG = rkG′;

(20) rkG = 0 if and only if G = U=×? ;

(21) rk O= = =;

(22) rk 2G = rkG, for any 2 ∈ R0;

(23) rkG + H ≤ rkG + rkH;

(24) rkG − H ≥ | rkG − rkH |;

(25) rkGH ≤ min{rkG, rkH};

(26) rkG =
∑=

8=1 1{_8 ≠ 0};

60



(27) det O= = 1;

(28) detG′ = detG;

(29) detG−1 = (detG)−1;

(30) detGH = detGdetH;

(31) det(2G) = 2= detG, for any 2 ∈ R;

(32) for a lower or upper triangular matrix, including a diagonal matrix, G

detG =

=∏
8=1

088 ;

(33) the determinant changes signs when two rows of G are interchanged;

(34) subtracting a multiple of one row of G from another leaves detG unchanged;

(35) if G has a row of zeros then detG = 0;

(36) the determinant is a function of each row separately, i.e.����������
2011 2012 . . . 201=

021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� = 2
����������
011 012 . . . 01=

021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

����������
and ����������

011 + 0′11 012 + 0′12 . . . 01= + 0′1=
021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� =
����������
011 012 . . . 01=

021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� +
����������
0′11 0′12 . . . 0′1=
021 022 . . . 02=
...

...
. . .

...

0=1 0=2 . . . 0==

���������� ;

(37) trG =
∑=

8=1 088 ;

(38) trG + H = trG + trH;

(39) tr(2G) = 2 trG, for any 2 ∈ R;

(40) if G ∈ R=×? and H ∈ R?×= , then

trGH = trHG;

(41) tr(G′) = trG;

(42) tr 2 = 2 , for 2 ∈ R;
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(43) a square matrix is positive de�nite if x ′Gx > 0 for all x ∈ R=\{0};

(44) detG =
∏=
8=1 _8 ;

(45) trG =
∑=

8=1 _8 ;

(46) for a symmetric positive de�nite matrix:

(i) detG > 0 such that it is also non-singular;

(ii) trG > 0;

(iii) if G ≥ U and H ≥ U , then G + H is at least positive semi-de�nite;

(iv) G > U if and only if G−1 > U .

A.1 Vector and matrix di�erentiation

(1) df ′ = (df ) ′;

(2) d(2f ) = 2 df , for any 2 ∈ R;

(3) d(f ± g) = df ± dg;

(4) d(trf ) = tr df ;

(5) dfg = (df )g + f (dg);

(6) �Gx = G;

(7) �x ′Ga = a′G;

(8) �a′Gx = a′G;

(9) �x ′Gx = x ′(G +G′).
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B Additional Material (All Non-Examinable)

This section of the appendix collects together additional material which has been taught on the pre-
course in previous years. It is meant solely as a reference and does not form part of the course this
year.

B.1 Preliminary concepts

B.1.1 Hadamard and Kronecker product (∗)
The way to de�ne matrix multiplication as we have done before is not the only way. Below, we present
two more ways to do so.

De�nition 27 (Hadamard product). For two = × ? matrices G and H the Hadamard product G � H is
obtained by element-wise multiplication,

(G � H)8 9 := (G)8 9 (H)8 9 .

The Hadamard product yields a matrix of the same dimensions as the individual factors. By the de�nition
above, it is not de�ned for two matrices of di�erent dimensions. This particular matrix product satis�es
the properties below.

Properties 11 (Hadamard product). For three conformable matrices G, H and I :

(i) G � H = H � G;

(ii) G � (H � I) = (G � H) � I ;

(iii) G � (H + I) = G � H +G � I ;

(iv) the identity matrix under the Hadamard product O� is a matrix of the same dimension of all ones

GO� = G = O�G,

and every matrix without any zero-valued elements has an inverse with elements (G−1
�
)8 9 = 1/(G)8 9

such that

G � G−1
� = O� = G−1

� � G.

(v) rkG � H ≤ rkG rkH.

Example B.1. The Hadamard product between the matrices

G =

[
18 −5
13 −10

]
and H =

[
−1 −9
2 −17

]
,
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is

G � H =

[
−18 45
26 170

]
.

Finally, we introduce the Kronecker product. This product is de�ned for any two matrices of arbitrary
dimensions.

De�nition 28 (Kronecker product). The Kronecker product between an = × ? matrix G and a : ×<
matrix H is the =: × ?< matrix

G ⊗ H =


011H . . . 01?H
...

. . .
...

0=1H . . . 0=?H

 .
The Kronecker product has many interesting applications and properties, some of which are listed below.

Properties 12 (Kronecker product). For four matrices G, H, I and J :

(i) 2 (G ⊗ H) = (2G) ⊗ H = G ⊗ (2H), for any 2 ∈ R;

(ii) (G ⊗ H) ′ = G′ ⊗ H′;

(iii) (G ⊗ H) ⊗ I = G ⊗ (H ⊗ I);

(iv) (G + H) ⊗ I = G ⊗ I + H ⊗ I ;

(v) G ⊗ (H + I) = G ⊗ H +G ⊗ I ;

(vi) (G ⊗ H) (I ⊗ J) = GI ⊗ HJ ;

(vii) rkG ⊗ H = rkG rkH;

(viii) for G ∈ R=×= and H ∈ R<×< :

(a) trG ⊗ H = trH ⊗ G = trG trH;

(b) detG ⊗ H = detH ⊗ G = (detG)= (detH)< .

The Kronecker product will be useful for us in Appendix B.3.1.

B.2 Square matrices

B.2.1 Determinant by Laplacian expansion (∗)
Another way to compute the determinant is given by the Laplacian expansion. In order to de�ne the
determinant in this way, we consider a set (1, . . . , =) and a permutation f = ( 91, . . . , 9=) thereof. Recall
that a permutation is any rearrangement of the original set. For a set of size =, there are =! permutations.
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We call a transposition the interchange of two elements of (1, . . . , =) and denote the total number of
transpositions needed to obtain f from (1, . . . , =) by # (f).

Example B.2. Consider the set (1, 2, 3) which has 3! = 6 permutations (check this). Two of these
permutations are f1 = (1, 3, 2) and f2 = (3, 1, 2). To get f1, we interchanged 2 and 3 such that we needed
only one transposition. Hence, # (f1) = 1. For f2, we needed two transpositions

(1, 2, 3) ↦→ (3, 2, 1) ↦→ (3, 1, 2),

and thus # (f2) = 2.

Now, let the map sgn : N→ {−1, 1} be

sgn(f) =

−1 if # (f) is odd

1 if # (f) is even
.

Example B.3 (Example B.2 continued). Given the above de�nition, sgn(f1) = −1 and sgn(f2) = 1.

De�nition 29 (Determinant by Laplacian expansion). The determinant of a square = × = matrix G
de�ned by the Laplacian expansion is

detG :=
∑

sgn(f)
=∏
8=1

08 98 , (9)

where the sum is taken over all =! permutations, f , of (1, . . . , =).

Example B.4. Consider the 2 × 2 matrix

G =

[
0 1

2 3

]
.

There are two permutations of (1, 2), i.e. (2, 1) and (1, 2) itself. We have that sgn(1, 2) = 1 and
sgn(2, 1) = −1. Plugging this into (9)

detG = 1 × 011022 + (−1) × 012021

= 03 − 12.

Example B.5. Consider the 3 × 3 matrix

G =


011 012 013

021 022 023

031 032 033

 .
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The set (1, 2, 3) has 6 permutations:

(1, 2, 3), (1, 3, 2),

(2, 1, 3), (2, 3, 1),

(3, 1, 2), (3, 2, 1) .

The determinant of a 3 × 3 is therefore

detG = sgn(1, 2, 3)011022033 + sgn(1, 3, 2)011023032 + sgn(2, 1, 3)012021033 + sgn(2, 3, 1)012023031

+ sgn(3, 1, 2)013021032 + sgn(3, 2, 1)013022031

=011022033 − 011023032 − 012021033 + 012023031 + 013021032 − 013022031.

The Laplacian expansion gives you exactly the same as expanding in cofactors such that these two
de�nitions for the determinant are equivalent.

B.3 Vector and matrix calculus

We have all the tools to introduce vector and matrix calculus. To gain some intuition, recall the de�nition
of the derivative in the one-dimensional case

lim
D→0

i (G + D) − i (G)
D

= i ′(G) .

Re-writing gives,

i (G + D) = i (G) + i ′(G)D + AG (D) (10)

where AG (D) is the remainder term such that AG (D)/D → 0 as D → 0.

De�ne the �rst di�erential of i at G (with increment D) as di (G ;D) = i ′(G)D. Note, that we do not
require D to be in�nitesimally small for the di�erential to be well de�ned. As the example below shows,
di (G ;D) is the linear part (in D) of the increment i (G +D) −i (G). Setting aside rigorous justi�cation for
the double use of the symbol “d”, we will write dG for D, hence di (G) = i ′(G) dG .

Example B.6. For i (G) = G2, we have i (G +D) −i (G) = 2GD +D2. Then, it follows that di (G ;D) = 2GD
with AG (D) = D2 such that AG (D)/D = D → 0 as D → 0.

The expansion in (10) caries over into the vector case

f (x + u) = f (x) +G(x)u + rx (u) . (11)

If G(x) depends only on x but not on u and rx (u)/‖u‖ → 0 as u → 0, then f is di�erentiable at x .
From this expansion you may see that G(x) is an operator acting on a vector u ∈ R= . Combine this with
the fact that f : R= → R< yields an<-vector-valued output, then there can be no ambiguity that G(u)
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needs to be an< × = matrix.

Remark. In this exposition, we have concentrated on vector-valued functions, f , with vectors as input.
The results carry over for scalar functions or scalar inputs. In those cases, set < = 1 or = = 1 or
both. Hence, di�erentiating a scalar-valued function with respect to a vector produces a row vector
and di�erentiating a vector-valued function with respect to a vector produces a matrix. The obvious
consequence of this is that the second derivative of a scalar-valued function with respect to a vector is a
matrix, e.g. recall the Hessian matrix in de�nition 26.

The problem with the above expansion is that it does not always provide us with an easy recipe to �nd
G(x). Let the �rst di�erential be

df (x ; u) = G(x)u,

and take the following identi�cation result as given

df (x) = �(x) dx ⇔ �f (x) = G(x) . (12)

This result states that if the function is di�erentiable at x , we can identify the �rst derivative as the
Jacobian matrix from de�nition 25. Hence, depending on the situation we can either �nd G(u) directly
or compute �f (x).

Unlike the one-dimensional case, it is often easier to work with di�erentials rather than derivatives
in the multi-dimensional case; this is especially true when we consider matrices further down below.
Therefore, the following properties are stated in terms of di�erentials and not derivatives.

Properties 13 (Vector-valued di�erentials). Let f and g be two conformable vector functions:

(i) df ′ = (df ) ′;

(ii) d(2f ) = 2 df , for any 2 ∈ R;

(iii) d(f ± g) = df ± dg;

(iv) dfg = (df )g + f (dg).

Example B.7. Consider the scalar-valued function i (x) = a′x , where a is a vector of coe�cients. Then,

a′(x + u) − a′x = a′u .

In line with (11), set G(x) = a′ and rx (u) = 0. Hence, da′x = a′ dx . It follows that �i (x) = a′, a row
vector as expected.

Example B.8. Consider the scalar-valued function i (x) = x ′Gx , where G is a matrix of coe�cients.
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First, notice that with similar reasoning as in example B.7, we can show that dGx = Gdx . Furthermore,
(dx ′)Gx is a scalar so it is equal to its transpose x ′G′(dx ′) ′. Using this and properties (i) and (v) above,

di (x) = (dx ′)Gx + x ′ dGx

= x ′G′(dx ′) ′ + x ′Gdx

= x ′G′ dx + x ′Gdx

= x ′(G +G′) dx .

Hence, �i (x) = x ′(G +G′). Of course, if G is symmetric this reduces to: �i (x) = 2x ′G.

We illustrate using the derivative directly according to (12) which sets the following examples apart
from the previous ones.

ExampleB.9. Consider two vector-valued functionsf (x) = (1, G2, G
2
1) ′ andg(x) = (G1G2 exp{G2

3}, logG4) ′,
then the derivatives are

�f =


0 0
0 1

2G1 0

 ,
and

�g =

[
G2 exp{G2

3} G1 exp{G2
3} 2G1G2G3 exp{G2

3} 0
0 0 0 1/G4

]
.

Exercise B.1. Consider the scalar function i (G,~) = sin(G) sin(~). Find all its stationary points and
determine whether these are local minima, maxima or saddle points by computing the Hessian matrix.
Hint: what does the de�niteness of the Hessian matrix tell you about the concavity or convexity of i?

Example B.10. Consider some given = × 1 vector ~, = ×< matrix ^ , and < × 1 vector # . Find the
expression for # (in terms of ~ and ^ ) that satis�es the following condition

m

m#

[
(~ − ^#) ′(~ − ^#)

]
= 0.

Firstly let us expand the expression and consider the dimensions of our problem.

(~ − ^#) ′(~ − ^#) = (−# ′^ ′ +~′) (~ − ^#) = −# ′^ ′~
1×1
+ # ′^ ′^#

1×1
+~′~

1×1
−~′^#

1×1
,

such that it becomes clear immediately that we are being asked to take the derivative of a scalar with
respect to a< × 1 vector. We already know the resultant matrix will therefore be of size< × 1 (notice
here we di�erentiate with respect to # , rather than # ′ as would be the standard case according to our
de�nition of the Jacobian matrix).
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Next, di�erentiate each term individually to give

m

m#

[
(~ − ^#) ′(~ − ^#)

]
= −^ ′~

<×1
+ 2^ ′^#

<×1
− (~′^ ) ′

<×1
,

= −2^ ′~ + 2^ ′^# = −2^ ′(~ − ^#) = 0,

→ # = (^ ′^ )−1^ ′~.

Exercise B.2. In statistics, the problem of ridge regression is formulated as follows

#̂' (_) := arg min
V∈R:

(~ − ^#) ′(~ − ^#) + _‖# ‖2,

where _ ∈ R is a parameter that needs to be chosen beforehand. Notice, that this is a least-squares
problem but where # ’s which are “too large” are penalised. By computing the �rst-order conditions,
�nd #̂' (_).

Exercise B.3 (PCA continued). Show that the solution to (5) in Section 4.4.1 is indeed an eigenvector
of ˜̂ ′ ˜̂ . Argue that the optimal solution is the eigenvector associated with the largest eigenvalue.

B.3.1 Derivative with respect to a matrix (∗)
So far we have only discussed how to di�erentiate with respect to a scalar or a vector, but not with
respect to a matrix. However, before we do so we must introduce the concept of vectorisation.

De�nition 30. The vectorisation of a matrix G, denoted by vecG, reorders the =×? matrix by stacking
the columns on top of each other into an =?-vector. Formally,

vecG := (011, . . . , 0=1, 012, . . . , 0=2, . . . , 01? , . . . , 0=?) ′.

Example B.11. The vectorisation of the matrix G =

[
0 1

2 3

]
is

vecG =


0

2

1

3


.

Vectorise the matrix-valued function and the matrix with respect to which we are di�erentiating, then
the Jacobian matrix of L at ^ is identi�ed by

�L (^ ) = dvec L (^ )
d(vec^ ) ′ , (13)

which for L a = ×? matrix-valued function and ^ a< ×@ matrix yields a matrix of order =? ×<@.
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This is not to only way to represent the matrix derivative. However, Magnus and Neudecker (1999)
argue that this is the only natural generalisation of the Jacobian matrix from vectors to matrices. It is
possible to go via a de�nition using partial derivatives which orders the derivatives as such

mL (^ )
m^

=


m511 (^ )
m^ . . .

m51? (^ )
m^

...
. . .

...
m5=1 (^ )
m^ . . .

m5=? (^ )
m^

 ,
with

m58 9 (^ )
m^

=


m58 9 (^ )
mG11

. . .
m58 9 (^ )
mG1@

...
. . .

...
m58 9 (^ )
mG<1

. . .
m58 9 (^ )
mG<@

 .
The matrix mL (^ )

m^ is of order<= × ?@ and contains the same<=?@ partial derivatives as �L but in a
di�erent order. Magnus and Neudecker (1999, p. 195) state that this matrix is not the Jacobian matrix,
and thus its determinant is meaningless which is a problem for applications, nor does this de�nition
provide us with a practical chain rule. In the remainder of the discussion, we will therefore stick with
(13).

Below, we present some properties of vectorisation.

Properties 14 (Vectorisation). For three conformable matrices G, H and I :

(i) vec(G + H) = vecG + vecH;

(ii) vec(G � H) = vecG � vecH;

(iii) vecGHI = (I ′ ⊗ G) vecH;

(iv) vecGH = (H′ ⊗ O=) vecG = (O< ⊗ �) vecH;

(v) vec(dL (^ )) = dvec L (^ ).

By vectorising, we can analyse matrix derivatives using exactly the same apparatus already developed
above. Let us look at some examples.

Example B.12. Consider the following matrix function L (^ ) = xx ′, i.e. L maps a vector into its outer
product. It should be obvious that dxx ′ = (dx)x ′ + x (dx) ′. Combining this with property (v) we get

d(vec xx ′) = vec(dxx ′)

= vec[(dx)x ′ + x (dx) ′],
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splitting up the sum by property (i), and rewriting the multiplications within the vectorisation using
property (iv) yields

= vec[(dx)x ′] + vec[x (dx) ′]

= (x ⊗ O ) vec(dx) + (O ⊗ x) vec((dx) ′)

= [(x ⊗ O ) + (O ⊗ x)] dx,

where the �nal equality follows upon realising that by de�nition vec((dx) ′) = vec(dx) = dx . Hence,
by (13)

�L (^ ) = x ⊗ O + O ⊗ x .

Example B.13. Consider the scalar function i (^ ) = a′^b , where a and b are conformable coe�cient
vectors. First, see that d(a′^b) = a′(d^ )b . Then, using the properties of vectorisation

d(vec a′^b) = vec(da′^b)

= vec a′(d^ )b

= (b ′ ⊗ a′) vec d^

= (b ′ ⊗ a′) dvec^ .

Therefore,

�i (^ ) = b ′ ⊗ a′,

which is a row vector, or in partial derivative notation

mi (^ )
m^

= ab ′.

Example B.14. Let L (G) = G−1 be a matrix-valued function. We have U= = dO= = dG−1G, such that

U= = dO= = dG−1G

= (dG−1)G +G−1 dG,

and thus,

dG−1 = −G−1(dG)G−1.

By the properties of vectorisation, it follows that

�L (G) = −(G′)−1 ⊗ G−1.

This result is interesting, because we can consider G(\ ) to be matrix function of a scalar parameter
\ ∈ R such that L (\ ) = G−1(\ ). This is useful in statistics as (inverses of) covariance matrices often
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depend on scalar parameters. The result above combined with a chain rule Magnus and Neudecker
(1999, Theorem 12 p. 108) gives

�G−1(\ ) = −[(G′)−1(\ ) ⊗ G−1(\ )]�G(\ ) .

Exercise B.4. Show that for i (^ ) = a′^^ ′a, we have �L (^ ) = 2(a′^ ) ⊗ a′.

Exercise B.5. Show for a square matrix ^ , L (^ ) = ^= and = ∈ N0, that

�L (^ ) =
=∑
?=1
(^ ′)=−? ⊗ ^?−1.
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