After QE

Why QE ?

By QE, the Fed increased the money supply to stimulate the aggregate demand in 2020 and 2021.

$$ Y=C+I+G+NX $$

By QE, more money were dumped into the economy. Two mainly used methods are (1) helicopter drops, and (2) banks/firms repo and CB reverse repo.

What happens after QE ?

  • 1. Individuals got the more money in hands (mainly from Helicopter Drops in 2020) — Consumption increased. In the U.S., people who had SSN and were taxed a year before a certain time point were assured an opportunity of helicopter drops. Those money were highly likely ( and it really is) to transform to real demands in the market, because of the consumption habit in the U.S.

The Fed printed extra money and dumped into the economy. People spent those extra money to buy goods and service. Less Goods and Services were produced domestically in the U.S., while most of them were imported from Mexico, India, Russia, China, Mideast, etc. That is what I discussed before. The U.S. printed money (, which are worthless), and use “nothing” to reap goods and services from all over the world.

The above is one fact. Another is that there are still too much of money in the economy. Too much money chased too little goods. Like Milton Fridman said “Inflation is nothing but a monetary phenomenon”. There were no enough outputs (aggregate supply) to meet the increase in aggregate demand resulted from QE, then inflation surged.

  • 2. Increase in supply of money dragged the interest rate down and thus reduced the financial cost for firms. Investment increased. This case is a bit different. In China, the CB conducted also QE to stimulate the economy especially in the current situation. However, the CB’s conduction is mainly through the Banking System. In this case, money are mainly poured into firms through loans not to individuals. Individuals are hardly able to get low-cost money because on the one hand them may not have enough pledges, and on the other hand people are fear to invest in the real estate, coz the real estate bubbles are in the edge of collapse although the gov is trying to keep the mkt stable.

Pros and Cons are there. Advantages are (1) firms that got the low-cost money are most likely state owned firms. In this case, there are “relative high probability” of safety. (2) firms encounter low financial cost and could have direct impact on infrastructures. Disadvantages are also that (1) money could not be directly given to individuals, no real happiness or utility increase for those family. Family based businesses are still suffering the plunges in demands and undergo bankruptcy. (2) too much money chase too little high-quality assets that can have potential positive expected return or payoffs. Money circulates in the economy, and costs circulates as well to increase. On the one hand there is low efficiency, on the other hand extra money does not contribute to stimulate the economy. Financial System discoodinates.

Statistics

The notes are not only a review for the preparation of quants but also hopefully a learning note for my babe.

Key Points

1. Preliminaries

Firstly and most importantly, I need to declare what is statistics and why shall we learn statistics. The following is only based on my own understanding. My understanding is pretty limited (I got only a master’s degree, so I am definitely not an expert in Statistics) and subjective, please provide your suggestions and even your blames to me. Glad to know your ideas.

1.1 What is Statistics?

From my understanding, Statistics is a tool, characterized by mathematics, to explain the world. Such a bull shit am I talking.

Be serious. I may say that statistics is a process to estimate the population by samples.

To do a study about the population is always costly, and pretty much unpredictable. For example, to do tests in the individual level, we have to collect data from all the people. The population census could only be done in a national level and conducted by the gov. Even so, the census is unable to be performed in a year-by-year basis, and there are measurement errors always. Thus, a more cost-effective way would be to estimate the population through the data from a small set of people who are randomly selected.

Another example could be the weather forecast, which is similar to doing a time series analysis or panel data analysis. The forecast may most likely be biased because things change unpredictably and irregularly. So we may say that is even impossible to and the full data to estimate the population (factors related to weather in this case). Thus, a simpler way might be that we collect different factors and historical data such as temperature, because we may assume the temperature changes are consistent over a short period of time.

However, there are gaps between population and sample. How could we connect those gaps? The answer is Statistics. Statistics provide some mathematical proven methods to make the sample have a better capture of the population, based on assumptions.

Let’s begin our study.

2. Probability

2.1 Conditional Probability

$$
P(A|B)=\frac{P(A\cap B)}{P(B)}\\ \\ P(A\cap B)=P(A|B)\times P(B)
$$

2.2 Mutually Exclusive and Independent Events

$$
P(A\cap B)=0 \\ \\ P(A\cup B)=P(A)+P(B)
$$

If two events are independent, then

$$
P(A|B)=P(A) \\ \\ so, \quad P(A\cap B)=P(A)\times P(B)
$$

3. Random Variables – r.v.

3.1 Definition

Random Variables: X, Y, Z

Observations: x,y,z

3.2 Probability Mass/Density Funciton – p.d.f. (For Discrete r.v. or Continuous r.v.)
3.2.1 Definition

p.d.f captures the probability that a r.v. X has a given value of x.

$$
P(X=x)=P(x)
$$

3.2.2 Properties of p.d.f.
  1. \(f(x)\geq 0\), since probability is always positive.
  2. \(\int_{-\infty}^{+\infty} f(x)\ dx=1\)
  3. \(P(a<X<b)=\int_a^b f(x) \ dx\)

Replace the integral with summation for discrete r.v.

P.S. For continuous r.v. X, P(X=x)=0. That means for a continuous r.v., any points on the p.d.f have a zero probability.

For example, the probability of selecting a number “3” among 1 to 10 is zero.

3.3 Cumulative Distribution Function – c.d.f

$$
F(X)=P(X\leq x) \\ \\ f(x)=\frac{d}{dx} F(x)
$$

3.4 Expectation

$$
E(X)=\mu \\ \\ E(X)=\int_{dominX}x\cdot f(x)\ dx=\sum_x x\cdot P(X=x) \\
$$

3.5 Variance and Standard Deviation

$$
Var(X)=\sigma^2\\ \\ Var(X)=E(X-E(X))=E(X^2)-(E(X))^2 \\ =\frac{\sum (x-\mu)^2}{n}=\frac{\sum x^2}{n}-\mu^2
$$

3.6 Moments

The first moment, \(E(X)=\mu\).

The n^{th} moment, \(E(X^n)=\int_x x^n\ f(x)\ dx\).

The second central moment is about mean. \(E(X-E(X))=\sigma^2\), Variance.

The third central moment, \(E(X-E(X))^3. Skewness = \frac{E(X-E(X))^3}{\sigma^3}\). Standard normal dist has a Skewness of 0. (Right or Left Tails)

The Fourth central moment, \(E(X-E(X))^4. Kurtosis = \frac{E(X-E(X))^4}{\sigma^4}\). Standard normal dist has a Kurtosis of 3. (Fat or This, Tall or Short).

3.7 Covariance

$$
Cov(X,Y)=E[(X-E(X))(Y-E((Y))]\\ =E(XY)-E(X)E(Y)
$$

4. Distribution

The meaning of distributions, and the properties (mean & var).

4.1 Bernoulli DIst
4.2 Binomial Dist
4.3 Possion Dist

$$
X \sim Possion(\lambda)\\ \\p.d.f \quad P(X=x)=\frac{e^{-\lambda}\lambda^x}{x!}\\ E(X)=\lambda,\quad Var(X)=\lambda
$$

4.4 Normal Dist & Standard Normal

$$
X\sim N(\mu,\sigma^2)\\ \\ p.d.f. \quad f(x)=\frac{1}{\sqrt{2\pi \sigma^2}}exp\frac{(x-\mu)^2}{2\sigma^2}
$$

For a standard normal dist,

$$
X\sim N(0,1)\\ \\ E(X)=0,\quad Var(X)=1
$$

4.4.1 Standardisation

$$
Z=\frac{X-\mu}{\sigma}
$$

4.4.2 Properties of Normal Dist

One / Two /Three standard deviation regions.

5. Central Limit Theorem – CLM

i.i.d. – independent identical distributed

Suppose X_1,X_2,…,X_n are n independent r.v., each has the same distribution, and as the number n increases, the distribtuion of

$$
X_1+X_2+…+X_n\\\\ \text{and,}\\\\ \frac{X_1+X_2+…+X_n}{n}
$$

would behave like a normal distribution.

Key facts:

  1. The distribution of X is not stated. We do not have to restrict the distribution of r.v.s, as long as they are in the same dist.
  2. If X is a r.v. with mean \(\mu\) and standard deviation \(\sigma\) from a random dist, the CLT tells that the distribution of the sample mean, \(\bar{X}\) is normal dist.

$$
E(\bar{X})=E(\frac{\sum X}{n})=\frac{\sum E(X)}{n}\\=\frac{n\mu}{n}=\mu\\ \\ $$

$$Var(\bar{X})=Var(\frac{\sum X}{n})=\frac{\sum Var(X)}{n^2}\\=\frac{n\sigma^2}{n^2}=\frac{\sigma^2}{n}\\
$$

Therefore, we would get the distribution of \bar{X},

$$
\bar{X}\sim N(\mu,\frac{\sigma^2}{n})
$$

By standardising it,

$$
\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)
$$

Also, for S_n=X_1+X_2+…+X_n.

$$
S_n \sim N(n\mu,n\sigma^2)\\\\ \frac{S_n-n\mu}{\sqrt{n}\sigma}
$$

The more observations there are, the more similar the distribution to normal would be. Also, a less standard deviation means the estimate has fewer variations and is more accurate.

Why is CLT important?

It is important because it provides a way to use repeated observations to estimate the whole population, which is impossible to be observed.

6. A Few Notations

Recall, our aim of using statistics is to find the true population. We may assume the true population follows a distribution, and that distribution has some parameters. What we are doing right now is to use the sample data (feasibly collectible) to presume the population parameters.

  • Estimator: a function, using sample or available data, to estimate the population. i.e. \(\bar{x}\) and \(S^2\).
  • Estimate: the value/figure we truly calculated. By inputting data into the estimator, the output is the estimate.
Population (Population Parameters that we want to get but can never get)

Population Mean: \(\mu=\frac{\sum x_i}{N}\).

Population Variance: \(\sigma^2=\frac{\sum (x_i-\mu)^2}{N}\).

Sample Estimator

Sample Mean: \(\bar{x}=\frac{\sum x_i}{N}\).

Sample Variance: \(\hat{\sigma}^2=\frac{\sum (x_i-\bar{x})^2}{N}\).

Throw data into sample estimators would get the estimates, and those estimates are then applied to presume the population parameters.

Remember that sample is only part of the population, we collect data from the sample because they are more accessible and feasible to get. Still, we need to use our sample data to be representative of the population, or in another word, to have some foreseers about the whole population. Therefore, we use a different notation for sample statistics.

An important aspect is that we need our sample to have better representativeness of the population. There are some measurements.

6.1 Unbiasedness

If \(E(\bar{X})=\mu, \text{or} \ E(S^2)=\sigma^2 \)(the expectation of our sample estimate is equal to the population), then we would say the estimator is unbiased.

The unbiased estimator of sample variance is \(S^2=\frac{\sum (x_i-\bar{x})^2}{n-1}\).

$$
E(S^2)=\sigma^2
$$

Why the denominator is “n-1”?

There would be a long discussion to talk about that. We can simply understand “-1” as the adjustment of the \(\bar{x}\) in the numerator because \(\bar{x}\) is calculated to represent the population mean \(\mu\) and \(\bar{x}\) is not intrinsically available (it is costly, to save for the cost, the denominator has a deduction).

In sum, \(S^2\) is an unbiased estimator of population variance, \(\sigma^2\). We also have a special name for the sample standard deviation, Standard Error, s.e..

6.2 Consistency

If there is an estimator such that as \(n\rightarrow \infty\) , the estimator goes close to the population parameter, we may say that estimator is consistent.

For example, although \(\hat{\sigma}^2=\frac{\sum (x_i-\mu)^2}{N}\) is biased, it is consistent if the number of observation keeps increasing.

Flaws of discussion is available in this section, awaiting to be updated.

7. Estimation

7.1 Maximum Likelihood Estimation – MLE

By assuming a probability distribution of the r.v. X, fitting into sample observations and trying to find the parameters that can maximise the joint probability (likelihood function).

To illustrate the problem, we need to find the parameters \lambda that can maximise the likelihood function.

$$
\lambda_0=\text{arg}\max_{\lambda}\ L(\lambda;x)
$$

The value of the parameters \(\lambda_0\) is our MLE estimator. (Remember what estimator is? See section 6).

For example

Assume r.v. \(X\sim N(\mu,\sigma^2)\). Let \(x_1,x_2,…,x_n\) be a random sample of i.i.d. observations. We use MLE to find the value of \(\mu\) and \(\sigma^2\). So, we need to maximise the log-likelihood function (instead of using the likelihood function, we do a logarithm transformation for easier calculation. Because the log transformation is monotonic, the transformation is legal).

$$
\begin{align*} f(x_1,x_2,…,x_n;\mu,\sigma^2)&=f(x_1,\mu,\sigma^2)f(x_2,\mu,\sigma^2)…f(x_n,\mu,\sigma^2)\\ \text{Let}\\L(\mu,\sigma^2;x_1,x_2,…,x_n)&=log \ l(\mu,\sigma^2;x_1,x_2,…,x_n)\\ &=log\ f(x_1;\mu,\sigma^2)+log\ f(x_2;\mu,\sigma^2)+…+log\ f(x_n;\mu,\sigma^2)\\ &=\sum_{i=1}^N log\ f(x_i;\mu,\sigma^2) \\ \text{Plug in }f(x;\mu,\sigma^2)=\frac{1}{\sqrt{2\pi \sigma^2}}exp\frac{(x-\mu)^2}{2\sigma^2} \\ L(\mu,\sigma^2;x_1,…,x_n)&=log\ [\sum \frac{1}{\sqrt{2\pi \sigma^2}}exp\frac{(x-\mu)^2}{2\sigma^2} ] \\ &=-\frac{n}{2}log\ (2\pi)-n\cdot log\ (\sigma)-\frac{1}{2\sigma^2}\sum (x_i-\mu)^2 \end{align*}
$$

F.O.C.

$$
\hat{\mu}_{MLE}=\frac{1}{n}\sum x_i \\ \hat{\sigma^2}_{MLE}=\frac{1}{n}\sum (x_i-\mu)^2
$$

We would find the MLE estimators are the same as the OLS estimator in the following section.

7.2 Regression

Assume a linear model through which we can have a minimum sum mean squared.

$$
\hat{\beta}_{all}=arg\min_{\beta_{all}}\sum(y_i-\hat{y_i})^2\\ \Leftrightarrow\\ \hat{\beta}=arg\min_{\beta}(Y-\hat{Y})'(Y-\hat{Y})\\ \\
$$

, where

$$
\hat{y}=\hat{\beta_0}+\hat{\beta_1}x_1+…+\hat{\beta_k}\\ or,\quad \hat{Y}=X\hat{\beta}
$$

F.O.C.

$$\hat{\beta}=(X’X)^{-1}X’Y$$

近期经济观察 – FX rate

USD keeps appreciated after the release of interest rate increase by FOMC on Wednesday last week. The serious attitude from the Fed made the markets adjust their expectation for the interest rate level at the end of this year to be around 4.00% – 4.50% (previous expectation is around 4%). The increase of expectation turned down the equity market in a large percentage.

FX rate becomes also dramatic. The most recent available US dollar index went to be 125 on 16th September 2022. The data after the FOMC will be released this week, and let’s see how the meeting affects the US dollar Index last week.

Clearly, the increase of the USD index is caused by the increase in the US interest rate. USD appreciated are due to not only investors are chasing higher interest rate gains in the US, but also the liquidity gap in USD.

In one of my previous study, I discussed that the Fed keeps QE and QT during the economic cycles to squeeze resources and capitals from all over the world. That results in the magic economic phenomenon in the US currently that high inflation from previous QE and helicopter drops, high interest rate from the Fed, and still very low level of unemployment rate.

  • Could the inflation and high interest rate continue? Maybe Yes.
  • Could the low unemployment rate continue? Maybe No.

China is facing a problem in the domestic market. The gov and CB are struggling with the domestic economy and the foreign exchange. The real estate market seems more vulnerable and more volatile so that CB scarifies the relatively constant FX target, to still hold a low level of interest rate to stimulate investment and domestic mkt.

However, we seem cannot get an obvious react in the short run, the fundamentals still have none improvement. The non-optimistic economic environment reinforces the depreciation of CNY, as I discussed in previous blogs that the growth and prosperity of an economy is another important aspect affecting the FX rate.

Based on above illustrations, I may expect that USD would keep appreciating. Also, the appreciation seems won’t stop if there is not a clear indication of changes in the Fed’s Policy. However, USD appreciation drives capital flowing to the US market, and that is clearly not what every sovereign countries want, because the capital accumulation is moving the US. How could the progress stop? What can we do?

Calculus

For the preparation of Quants

1. Functions Definition

1.1 Each x has only one y

A function denoted f (x) of a single variable x is a rule that assigns each element of a set X ( written x \in X ) to exactly one element y of a set Y ( y\in Y) :
$$
y=f(x)\quad or \quad x\rightarrow f(x)
$$

1.2 Domain of f

$Dom f$ Domain of Function

$Im f$ Image of Function

For a given value of x, there should be at most one value of y.

1.3 Implicit Form f(x,y)=0

For example,
$$
4y^4-2y^2x^2-yx^2+x^2+3=0
$$

1.4 Polynomials

$$
y=f(x)=a_0+a_1x+a_2x^2+…+a_nx^n
$$

2. Implicit Differentiation

For example,
$$
y=a^x
$$
Mainly two ways to take derivatives,
$$
ln(y)=ln(a^x)=xln(a) \
\frac{1}{y}\frac{dy}{dx}=ln(a)\quad\text{by taking derivatives to x}\
\Rightarrow \frac{dy}{dx}=y\cdot ln(a) \
$$
and plug y=a^x inside
$$
\frac{dy}{dx}=a^x\cdot ln(a)
$$
Or, simply we apply the exponential transformation, and take deriviatives later.
$$
y=e^{ln(a^x)}=e^{x\cdot ln(a)}
$$
However, for a polynomial, we normally have to do the implicit differentiation.
$$
4y^4-2y^2x^2-yx^2+x^2+3=0 \\
16y^3y’-(4y’yx^2+4y^2x)-(y’x^2+2yx)+2x=0 $$
$$(16y^3-2yx^2-x^2)y’=-2x+4y^2x+2xy \\
\Rightarrow y’=\frac{-2x+4y^2x+2xy}{16y^3-2yx^2-x^2}
$$

3. L ‘Hospital’s Rule & Limitations

If there is a limitation (, which is called as the inderterminate form),
$$
\lim_{x \rightarrow a} \frac{f(x)}{g(x)}\equiv \frac{0}{0} \ or \ \frac{\infty}{\infty}
$$
then, it could be calculated as,
$$
\lim_{x \rightarrow a} \frac{f(x)}{g(x)}=\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}=\lim_{x \rightarrow a} \frac{f”(x)}{g”(x)}=…=\lim_{x \rightarrow a} \frac{f^{(n)}(x)}{g^{(n)}(x)}
$$
For example, \frac{sin(x)}{x}, at x \rightarrow 0.

4. Taylor Series

Approximate a function a certain point, by a series of terms.(detailing explaination sees Blog Section 6 )

We use the 1st, 2nd, 3rd, 4th, … n^th derivatives, etc, to approximate the function at a certain value.
$$
f(x)\approx f(x_0)+(x-x_0)f'(x)|_{x=x_0}+\frac{1}{2}(x-x_0)f”(x)|_{x=x_0}+…+\frac{1}{n!}f^{(n)}(x)|_{x=x_0}(x-x_0)^n
$$

For example, e^x at x=0.
$$
e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+…+\frac{x^n}{n!}
$$

5. Integration

5.1 Intergration by Parts

$$
y=u(x)v(x) \
y’=u’\cdot v +u\cdot v’ \
u’v=y’-uv’ \
$$

and then integrate from both sides,
$$
\int u’v dx=\int y’ dx-\int uv’ dx
$$
as \int y’ dx = y+C, so we would get,
$$
\int u’v\cdot dx=\int v\cdot du=y-\int u\cdot dv +C
$$
For example,
$$
\int xe^x\cdot dx=\int x\cdot de^x \
=xe^x-\int e^x\cdot dx +(C) \
=xe^x-e^x+(C)
$$

5.2 Reduction Formula

We define a integral, (I_n is called Gamma Function)
$$
\int_0^{\infty}e^{-t}t^n\cdot dt= I_n
$$
$n$ is determined as the subscript of $I_n$, and could be treated as a constant in that integral.

We integrate that formula, and would get,
$$
n\int_0^{\infty}e^{-t}t^{n-1}dt=I_n \
n\cdot I_{n-1}=I_n
$$
If we keep doing that, we would get,
$$
I_n= n\cdot I_{n-1}=n(n-1)I_{n-2}=…=n!\cdot I_0
$$
where,
$$
I_0=\int_0^{\infty}e^{-t}\cdot dt=1
$$
so we get,
$$
I_n=n!\cdot I_0=n!
$$

5.3 Other Tips

5.3.1 ln|f(x)|

$$
\int \frac{f'(x)}{f(x)}=ln|x|+C
$$

For example,
$$
\int \frac{x}{1+x^2}dx\
=\frac{1}{2}\int\frac{1}{1+x^2}dx^2=\frac{1}{2}\int\frac{1}{1+x^2}d(1+x^2) \
=\frac{1}{2}ln|1+x^2|+C
$$

5.3.2 Decompose the Fraction – Factorisation

For example,
$$
\frac{1}{(x-2)(x+3)}=\frac{A}{x-2}+\frac{B}{x+3}\
A=\frac{1}{5},\quad B=-\frac{1}{5}
$$
The further implication is that.

Any rational expression \frac{f(x)}{g(x)}, ( with degree of f(x) < degree of g(x)), could be rewritten as.
$$
\frac{f(x)}{g(x)}\equiv F_1+F_2 +…+F_k
$$
, where each F_i Is,
$$
F_i=\frac{A}{(px+q)^m}\quad or\quad \frac{Ax+B}{(px+q)^m}
$$

6. Complex Number – i

6.1 Definition

$$
z=x+iy\
i=\sqrt{-i}\quad, i^2=-1
$$

and z could be expressed in polar co-ordinate form as,
$$
z=r(cos \theta+i\ sin\theta)
$$
, where
$$
x=r\ cos\theta \quad, y=r\ sin\theta
$$
The set of all complex numbers is denoted \mathbb{C}; and for any complex number z, we could write z \in \mathbb{C}. ( \mathbb{R} \subset \mathbb{C} ).

6.2 Modulus

The modulus of z donates |z| is defined as,
$$
|z|=r=\sqrt{x^2+y^2}
$$

Modulus
6.3 Complex Conjugate

$$
\bar{z}=x-iy
$$

For example, if z=x+iy, then \bar{z}=x-iy.

6.4 Polar Form

$$
z=r(cos\ \theta+i\ sin \ \theta)=re^{i\theta}
$$

by Euler’s Identity,
$$
e^{i\theta}=cos\ \theta+i\ \sin\ \theta \
e^{-i\theta}=cos\ \theta-i\ \sin\ \theta \
|z|=r,\quad arg\ z=\theta
$$

6.5 Euler’s Formula

The Euler’s Identity is shown as, by applying Taylor’s Expansion and by i^2=-1,
$$
e^{i\theta}=1+i\theta+\frac{(i\theta)^2}{2!}+…+\frac{(i\theta)^n}{n!}\
=(1-\frac{\theta^2}{2}+\frac{\theta^4}{4!}+…)+i\times(\theta-\frac{theta^3}{3!}+\frac{\theta^5}{5!}+…) $$
$$=cos\ \theta +i\ \sin\ \theta$$
Plug \(\theta = \pi\) into Euler’s Formula,
$$
e^{i\pi}=cos\ \pi+ sin\ \pi\
e^{i\pi}=-1
$$

7.Higher Derivatives

$$
\frac{\partial^2 f}{\partial x^2}=f_{xx}=\frac{\partial}{\partial x}(\frac{\partial f}{\partial x}) \ \
\frac{\partial^2 f}{\partial x \partial y}=f_{xy}=\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}), $$
\(f_{xy}=f_{yx}\) Sequence no matters if 2nd derivatives exist and continuous.

Reference

日本和韩国-低生育率的两个模版

经济发展潜力中,不可或缺的就是相对年轻的人口结构,我国的发展模式也是摸着石头过河,参考各个经济体的发展经验,从而试验出最适合我们发展的路线。东亚更是在战后成为全球发展最快的经济区域,其中我国的经济发展还相对靠后一些,最具代表性的是日本、韩国以及新加坡,也是少数跨越中等收入陷阱进入发达国家行列的经济体,日本迅速成为世界第二大经济体,韩国创造了著名的汉江奇迹,并且创造了发展中国经济体在此阶段的增长记录,改开后的很多政策都能看到这些经济体发展时期的影子。人口结构在东亚发展中也比较特殊,经济高增长时期往往是人口结构相对年轻的时候,而深度老龄化与少子化又比其他区域也更严峻,甚至出现了未富先老的问题,日本和韩国对待人口问题的政策差异很大,结果数据上也差异很大,为后来的经济体提供了两个参考模板。

1. 东亚经济奇迹与人口红利

第二次世界大战以后,世界格局洗牌,但东亚依旧很难摆脱贫穷落后的标签,日本虽然具有工业体系,身为法西斯和战败国被美军占领,当时也有戏称麦克阿瑟是日本真正的天皇。东亚之后便集中出现了多个经济体进入高速的发展阶段,其中以体量和增速划分,日本处于经济增长的第一梯队,凭借着工业化水平和出口导向,迅速实现了工业化到民用商品化的转化,全球范围内都能看到日本商品的影子,三四十年的发展便坐上世界第二大经济体的为主。第二梯队则是以韩国、我国台湾、我国香港、新加坡为代表的高增长经济体,俗称为亚洲四小龙,韩国在1965~1989年平均经济增速中,与新加坡共同领衔全球最高的7%的增速,根据70法则,每十年经济翻一番,韩国的经济奇迹也被称为汉江奇迹。第三梯队则是我国大陆、东南亚一些欠发挥国家为代表的经济体。以1965~1989年期间的经济数据,全球经济增长前十的国家和地区,除了瑞士、埃及加拿大以外的七个经济区域都在东亚。年平均增长率超过4%的12个经济区域,东亚占9个,筑起了东亚奇迹。

当然90年代以后,日本韩国纷纷深陷经济金融危机,但东亚奇迹并没有结束,而是一个新的开始,接过高速发展旗帜的则是我们经济体。我国市场经济虽然起步晚,但凭借着综合优势,比如基础工业化既有苏联老大哥的协助,又有中美蜜月期美国的协助,结合巨大的高性价比人口红利释放,尤其是60后婴儿潮、80后婴儿潮。快速的坐稳世界第一大制造业产能国、稳居世界第二大经济体以及世界第一大进出口国,超过韩国创造的7%发展奇迹,改革开放后维持了40年平均9.7%的增速,单独支撑了一个经济奇迹,至于最近十几年跟着玩金融信贷扩张,透支经济未来以及政策推高的资产泡沫,那是另外一个故事了,十几亿人温饱脱贫是举世无双的经济成就。

结合东亚人口稠密,资源有限,竞争激烈,可能还有传统文化的影响,盛产高性价比劳动力,这对任何资本都是一座金山,对内可以支撑发展的原始积累,对外是吸引国际资本和产业的筹码,资本都是逐利的。不管是我国、日本、韩国,经济高速增长时期都离不开一个支撑,那就是相对年轻的人口结构,我国的62年以后每年约2500万的婴儿潮,韩国1955~1963年的710万婴儿潮,日本的战后和平时期3年超过800万的婴儿潮,之后都成为了经济发展的重要力量,现在也被称为人口红利。人口结构相对年轻,10个人8个劳动力,与10个人4个劳动力,经济发展潜力当然不同。有人总说我国人口多,不需要鼓励生育,典型的只看体量不看结构,消耗的人大于产出的人,压力都到了后来者头上,结果就是恶性循环。

日本与韩国人口问题的政策差异

高速的工业化,城镇化以及平均受教育水平都会降低人口出生率,但根据全球的发展趋势,这三项都很难逆转。政策干预生育率往往只能让生育率下降减速,最好的结果是稳住不继续下降,而这些政策的核心是增加公共服务,以及宏观资源向年轻群体倾斜。

我们先回顾一下日本模式,核心政府不断增加负债来维持社会的公共服务支出,进而弥补企业和居民部门信贷和消费收缩带来的问题,当然这种公共服务也包括对生育环节的扶持。这个趋势是从90年代日本资产泡沫破裂以后开始的,日本模式的好处是经济不至于崩地彻底,也并没有出现更大范围的失业和金融停摆。代价则是居高不下的政府负债率,政府杠杆主要经济体中独树一帜,美国经常提高政府负债上限至今也是望尘莫及。

之后还有了所谓的安倍经济学,其三板斧分别是:更宽松的货币政策、更灵活的财政政策以及结构性改革。前两个比较突出,但并没有新的东西,安倍经济学是把日本模式玩到了极致,用更快速的给政府加杠杆的方式,再配合灵活的财政政策给市场输血,刺激经济热度,尤其是给居民输血,经济状况好坏都需要维持居民的公共福利开销。当然代价也是非常明显的,安培经济学把兴奋剂翻一倍,效果立竿见影但持续时间很短,之后又恢复到了极低增长和负利率之中,更快速的积累了尾大不掉的政府杠杆,让后来日本货币政策几乎失去了选择的余地,只能在无限宽松中一条路走到黑,美联储加息周期中,美元兑日元一年不到的十年站上140的位置,日元一年不到的时间贬值25%。

日本政府加杠杆减低居民压力的方式,隐藏的一个利好数据则是总和生育率,90年代资产泡沫破裂前后的总和生育率在1.5左右,截止2021年的数据,日本的综合生育率为1.34,三十年降低了约0.16的程度。此外,日本还是全球人均寿命最高的经济体,这也验证了一个结论,虽然日本模式代价很大,但毕竟玩了三十年。既然做不动分配改革,政府加杠杆总好过迫使居民加杠杆。日本模式只要还能维系一天,这种公共服务和生育率预计就还能维持一天,直至日本模式玩崩为止,或者说,即使日本模式今天崩溃,那不也续了30年的命么,居民享受了三十年的高公共服务,人生也没有几个三十年,很难说不值。

而韩国则是另一个发达国家的极端,以10%左右的公共福利占GDP的比重在发达国家中稳坐倒数第一的宝座,对内要喂饱财阀势力,对外要喂饱国际资本。以前政府只需要与财阀斗争,97年亚洲金融危机放开了外资控股,现在的三星现代等大企业都有大量的外资控股,财阀和国际资本形成利益捆绑,让本就没有军事主权的国家,根本无法对这些既得利益者下手,强人如文在寅也并没有触及这些分利集团的核心,世袭罔替的大小财阀根据推算可以占到韩国GDP的9成以上,预计不是和平方式可以撼动的。

居民看不到希望,高压下也没有讨价还价的资本,这种经济发展更多的是钝刀杀人。既没有暴力,也没有明面的掠夺,但就是中下层逐渐成为财阀和买办利益的牺牲品。居民部门负债占GDP比值超过100%,也是2008年全球金融危机之后独一档的存在。虽然韩国公共福利占GDP的比重逐年增加,却依旧维持在10%水平。相比于经合组织的其他发达国家的30%左右仍有巨大的差异,常年处于垫底的水平。既得利益者对居民的高压掠夺,且极其吝啬的公平服务,不仅是世界上第一个突破1的经济体。还在不断的刷新着自己的记录,2021年更是把世界的下限拉低到0.81,成为全球和平时期最可能把自己民族搞绝种的经济体。

总结起来:东亚奇迹有他的进步性,但也有很多问题,依靠人口红利和快速的工业化崛起,也必将因为工业化后,人口红利老去进入深度的老龄化。日本模式和韩国模式,必将成为东亚其他后来发展经济体必要摸的石头,这里都可以归入到系列文章提到的上中下三策:上策分配改革,调节财富结构,出清既得利益者;中策政府部门负债维持公共支出,保障居民的社会福利和生活质量;下策则是把成本都压到居民头上,居民不断加杠杆为各个环节提供利益。

日本模式可以归入到中策,韩国模式则可以近似归入到下策。之所以用近似,是因为韩国模式也未必是坏的结果,韩国分配再烂,也已经进入了高收入国家行列,有大量的高附加值市场占比。东亚的其他经济体如果再不提前做分配改革计划的上策,又不愿意政府负债来维持公共支出和居民福利,一味的给居民加杠杆来加剧财富结构畸形的下策,结果只会比韩国更惨,更低的生育率,深度老龄化后的老无所依问题,社会的僵化和阶层固化,都将是不可抗拒但又可以预期的结果。

Ref

文章全文摘自王克单出处:https://mp.weixin.qq.com/s/7d21-hVYi2a3KyllR44o9Q

财务造假分析 – 大坑

财务造假的动机

  1. 避免ST
  2. 有融资需求,让报表好看
  3. 完成业绩对赌协议
  4. 个人利益

造假的手段

  1. 虚增收入 by 虚构客户 供应商,循环交易
  2. 虚增收入 by 无中生有,遭假合同 流水
  3. 虚增收入 by 提前确认收入(权责发生制 提前确认)
  4. 虚减费用 by 删除账目。 导致lia和exp同减少
  5. 虚减费用 by 会计政策变更,coz 不计提坏账等
  6. 虚减费用 by 跨周期确认费用 以调整利润

识别

  • 1. Gross Profit Margin

通过虚增利润、虚减费用等方法会造成 Gross Profit Margin陡增。因为Rev 虚增时 COGS不变;同理COGS虚减时, Rev不变 ==> 导致GPM陡增。

因此GPM跨时间周期中大幅波动;GPM 显著高于同业 等情况需要引起重视。

  • 2. Inventory Turnover 与 经营情况不符。

正常企业经营,Rev COGS高是由于卖货多,所以 Inv Turnover 增加,意味着企业运营能力提高,会带来 Rev COGS提高,会带来 NI提高。

但是,若Inv Turnover 减少,同时Rev增加,需要引起重视。有可能是企业,虚增业务导致Rev增加,而实际并未有业务发生,所以Inv不变,所以Inv Turnover不变。

  • 3. CF表

CFO与NI的关系。 若NI常年未能转化成Cash,说明企业有巨多A/R,此部分A/R很可能是虚增的:Dr. A/R; Cr.Rev 为了虚增Rev。

  • 4. Others

如企业账上有巨多Cash,还要融资。等不正常行为。

Reference

意识形态的思考

中美意识形态带来机构体系运行模式的不同。

我国 中央集权,部委及银行为中央效力。 e.g. 央行担任政府的银行的职能

US 三权分立:1. 行政机关:总统+内阁; 立法机关:参议院;3. 司法:最高法院。法律成文需要总统提案,参议院通过。&& Fed 和 gov独立。

意识形态的区别本无对错,都是控制社会主体有效运行的方式。

但是意识形态之间有区别:

  1. 中央集权的形态有助于上对下的管理,集中统一控制管理。但是会面临公平与效率的平衡:1. 指令有对错,取决于上层的能力和目的。2. 指令在传达向下时会浪费大量社会资源。3. 需要社会整体服从,分支的声音和思想会造成更大的效率浪费。4. 依托高层的信誉和下层的服从,需要大量的“服从”教育,减少异端思想,提高巩固稳定思想或没有思想。本质上看是基于管理的平衡和稳定。
  2. 分立的形态使得社会有自主的思想。基于社会主体max utility的假设,促进社会竞争,让社会自己达成动态均衡状态。但是同样会有以下问题:1. 社会不平等的现象必然会发生,因为意识形态本质上是在鼓励效率最大化,同时一定程度的放弃公平,所以不平等的到默许。2. 难以有social planner角色出现。3. dynamic equilibrium的体系可能会受极端冲击而崩塌。本质上是社会自我调节追求效率达到的平衡。

重复我的观点,意识形态本无对错,或者说就目前的社会研究难以分清对错。目前的国际矛盾也不是来源于意识形态的差异,而是来源于增长带来的对地位和利益的威胁。

虽然意识形态无对错,但是意识形态间的跳转意味着巨量的成本、摩擦、与体系机构等更新换代,同时还受制于历史文化因素考虑,意识形态无法跳转。因此,坚守自己所处的环境的意识形态,是为社会进步作出的最好的努力。

在我国,维持中央集权的意识形态是维持中国发展有效的方式,可以有自己的思想,但是不要制造发布意识形态间跳转的言论。我作为一个中国人,我坚定的热爱我的祖国,争取为我国发展作出贡献。

华商 高兵 经济研判

报告期内基金投资策略和运作分析

2022年我国经济面临的下行压力比较大,两会政府工作报告提出了5.5%左右的经济增长目标,要实现这个目标需要通过新老基建持续发力,地产政策的逐步放松来实现。稳增长的方向在一季度比较好的受到市场的追捧,而“新半军”方向外部受到俄乌冲突导致的供应链干扰以及大宗商品上涨带来的通胀压力,内部受到国内不断散发的疫情管控导致的企业停产和物流中断的干扰。

进入二季度以来国内受到了来自上海、吉林等地城市爆发的疫情导致诸多行业尤其是汽车制造业受到停产停工的影响,以及消费场景的缺失。市场也经历了较大幅度的回撤。经历长达1~2个月的努力,国内疫情逐步得到控制,从4月中下旬逐步开启了复产复工和消费复苏的道路。新能源汽车、汽车零部件、光伏以及消费等行业也逐步走出了底部,迎来了一波较强的预期修复,不少品种不仅回到前期高点,甚至创了历史新高。

上半年基金的主要配置方向聚焦在“复产复工+消费复苏”。复产复工围绕新能源汽车、汽车整车和零部件、光伏以及大众消费,同样受益于疫情控制好转后的医疗服务(眼科、医美等)我们也进行了重点布局。同时本基金也配置了半导体和军工领域的一些阿尔法属性较强的次新股。在新能源的方向,我们在持续做各种持仓品种的优化,尽最大可能选择瑕疵和干扰最小的细分赛道以及个股。同时我们也引入了部分弹性更大的二三线品种的研究和布局,比如新能源汽车细分领域和汽车零部件领域的新进入者,这些品种原有主业存在比较扎实的安全边际,其新进入的领域则需要逐步验证和证实,一旦证实成功市值空间将会打开。此外,本基金一直在光伏领域进行了重点配置,其中包括我们认为供需格局比较好的高纯石英砂,行业增速最快的环节微逆等。新的技术路径我们认为未来topcon和hit应该会并存,短期看topcon已经在下游用户招标上开始放量,业绩今年已经开始落地。在医药领域本基金主要配置了HPV疫苗、中药、医美和医疗服务等。大众消费领域主要围绕白酒啤酒以及其他消费品做了布局。

从今年以来基金净值的波动看,一季度经历了比较大的回撤,这个是需要我进行再次反思的地方。个人的力量无法对抗市场短期的波动,我们始终在严格的审视自己的组合的架构以及所选择个股未来到底能不能走出来。但是同时我本人也需要进一步完善投资框架,尤其是把宏观波动融入到组合管理中来。

管理人对宏观经济、证券市场及行业走势的简要展望

展望下半年,我们认为再度爆发系统性风险的机会偏小,我们对经济复苏和复产复工的前景更加看好。三季度看汽车零部件较之二季度基本面环比向上的趋势比较确定,一方面来自产能利用率的大幅度提升,另一方面来自于大宗商品价格回落带来的中游制造业盈利能力的提升。另外光伏板我们持续看好,尤其是看好今年招标落地比较多的topcon技术路线,同时我们认为石英砂的供应在未来几年仍然是偏紧的格局,无论是国内的新进入者还是海外的扩产都有本身的局限性。不受技术路径干扰的储能逆变器环节、带材以及银浆等也都非常值得关注。此外消费复苏的前景值得期待,前期受到疫情散发干扰因素比较多,我们等待基本面改善的积极信号出现。最后是计算机板块目前资金处于非常低配的位置,我们看好数据安全领域即将跨越从0~1的过程,这是一个蓝海市场,暂时看不到天花板,容易诞生大市值公司,我们只需要付出一点耐心即可。同时我们等待相关招标启动后给半导体和计算机软硬件公司带来业绩边际改善的机会。

综上:本基金配置的方向始终围绕“医药+消费+科技”的配置思路,不断优化组合的品种,逐步增强组合持仓的阿尔法属性,通过长周期持有来对抗短期市场的波动。

Ref

http://www.hsfund.com/upload/20220831/20220831094947470.doc